
VGA Pong in Hardware 
Chris Fallin <cfallin@nd.edu> 
 
Summary 
 
In order to exercise my newly-acquired knowledge of digital logic structure and design in 
Verilog, it was decided that I should complete some practical, nontrivial project on the 
Digilent Basys demo-board platform built around a Xilinx Spartan3E FPGA. I chose to 
create a hardware-based Pong implementation, generating valid VGA signals on the 
built-in display port and accepting input from a PS/2 keyboard. What follows is an 
account of the design as implemented. 
 
VGA Port 
 
The first milestone in the design process required that I produce a valid image on a 
standard VGA monitor attached to the demo board. A VGA connector has five signal 
lines of concern to this application: horizontal synchronization (H-sync), V-sync, red, 
green, and blue. Digilent has wired these directly to digital GPIO pins on the FPGA, with 
the implication that only eight colors are possible. 
 
VGA timing information is available freely throughout the Internet; the general idea is 
that one scans the display surface (CRT or LCD) left-to-right, top-to-bottom, and pulses 
the horizontal or vertical sync line low to reset to the left edge or the top of the screen, 
respectively. For some subset of each line, and for some subset of the lines within one 
frame, the electron beam is “active” – ie, not blanked (off-screen). 
 
With this information in hand, I first created a Verilog module to accept the onboard 50 
MHz clock and produce five outputs: H-sync, V-sync, active (not blanked), and 
horizontal/vertical coordinates. 
 
With the synchronization in place, the remainder of the display hardware simply has to 
determine the appropriate pixel value given the coordinate registers and send to the 
R/G/B lines, gated by the ‘active’ line. 
 
The display requirements for this particular application – a game of Pong that displays a 
square ball and two rectangular paddles – are very simple. These three objects are 
displayed by three “box detectors” – Verilog modules that take the coordinate registers 
and top, bottom, left, right coordinates and determine whether the current scan position 
lies within the given box. Each box detector drives one of the three colors, with the result 
that the game logic merely has to provide coordinates for the paddles and ball. 
 
Keyboard 
 
The keyboard support was trickier than expected, and in the end does not work 
completely robustly; however, this is likely due to race condition(s) for which a thorough 



solution would not be a practical use of time given the success of the remainder of the 
project. 
 
A PS/2 keyboard sends 11-bit words serially; the second through ninth bits are a one-byte 
scancode, LSB first. The data are clocked into a shift register by a clock provided by the 
keyboard. The receiver keeps count of the number of bits received; when a full 11 bits are 
in the shift register, a scancode-received line is pulsed. This sets into motion a scancode-
decoder state machine, necessary to interpret multi-byte sequences. 
 
The keyboard sends one-byte keycodes for keys W/S (left paddle up/down) and O/L 
(right paddle up/down), and sends the same keycodes prefixed by 0xF0 on key-up. The 
state machine interprets these sequences to provide four outputs, each of which is high 
precisely when the corresponding key is depressed. These lines provide control input to 
the game logic. 
 
Game Logic 
 
With paddle up/down lines provided, and the display hardware needing only the positions 
of the paddles and ball, all that remains is to create a simple state machine that moves and 
bounces the ball. 
 
The ball itself has two pieces of state: position (X/Y) and velocity. To simplify the game 
hardware, velocity always has X and Y components that are either +1 or -1; thus, only 
four directions are possible. On each clock to the state machine, the ball moves in the 
specified direction by one pixel. 
 
Collision detection consists of a set of comparators that determine whether the ball has hit 
any of the screen edges; and, if the left or right edge, if the ball hit the paddle. These 
results are provided to the bounce logic. This logic inverts the X or Y velocity if the 
appropriate bounce-detect has occurred; it also sets a flag in this case so that bounce 
detection resumes only once the ball has moved clear of the wall (otherwise it would 
continually flip direction and remain motionless). In the case of a left or right bounce 
without a paddle, the game-over flag is set, and this flag gates the motion state-machine 
clock so that all motion stops. 
 
The entire motion unit is driven by a slow motion clock produced by dividing the 50 
MHz system clock by 2^18. 
 
Verilog 
 
Attached. 


