aegraphs: Acyclic E-graphs

for Efficient Optimization in a Production Compiler

Chris Fallin (Fastly)
EGRAPHS 2023
chris@cfallin.org

mailto:chris@cfallin.org

In the beginning, there was a compiler backend...

Cranelift

Cranelift

* Open-source general-purpose optimizing compiler backend
* Written in Rust + a pattern-matching DSL (~200KLoC, ~130KLoC tests)
e SSA input, four ISAs (x86-64, aarch64, riscve4, s390x)

Cranelift

* Open-source general-purpose optimizing compiler backend
* Written in Rust + a pattern-matching DSL (~200KLoC, ~130KLoC tests)
e SSA input, four ISAs (x86-64, aarch64, riscve4, s390x)

 Used in production as part of Wasmtime

* (O(3-5) active developers at any time

Cranelift

 Speed: JIT focus
o Simplicity: “not LLVM”
» Verifiability: explicitly design with fuzzing + formal techniques + ... in mind

 Research-friendliness: we need new ideas to compete with larger peers

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again
3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons in translating research to production

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again
3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

Cranelift, circa mid-2022

* Focus on codegen quality & mid-end optimizations

 We had: GVN, constant folding, LICM, some simple rewrites

Cranelift, circa mid-2022

* Focus on codegen quality & mid-end optimizations

 We had: GVN, constant folding, LICM, some simple rewrites

v1 v1

V2 1add 1mm v1, 16 Y 1add 1mm v1, 16

vl = 1add 1mm vl1, 16 v1io -> v2

Cranelift, circa mid-2022

* Focus on codegen quality & mid-end optimizations
 We had: GVN, constant folding, LICM, some simple rewrites

 We added: alias analysis => redundant load elim + store-to-load forwarding

Cranelift, circa mid-2022

* Focus on codegen quality & mid-end optimizations
 We had: GVN, constant folding, LICM, some simple rewrites

 We added: alias analysis => redundant load elim + store-to-load forwarding

vl = .. vl = ..

v2 = load.164 v1+8 v2 = load.164 v1+8

vli®0O = load.164 v1+3 vl -> v2

The Pass-Order Problem

 What do we do with this program?

v1
V2

iadd imm v1, 16
v3 = load.164 v2

v10 1add 1mm v1, 16

vll load.164 v10

The Pass-Order Problem

 What do we do with this program?

v1
V2

iadd imm v1, 16
v3 = load.164 v2

vl -> v2
vll = load.164 v10

The Pass-Order Problem

 What do we do with this program?

v1
V2

iadd imm v1, 16
v3 = load.164 v2

vl -> v2

vlil -> v3

The Pass-Order Problem

 What do we do with this program?

v1
v2 = load.164 v1+8
v3d = 1add v2, vl

vli®O = load.164 v1+3

vll jadd v10, vl

The Pass-Order Problem

 What do we do with this program?

v1
v2 = load.164 v1+8
v3d = 1add v2, vl

vl -> v2

vlil -> v3

The Pass-Order Problem

 Proposed optimization pipeline:
fn optimize(&mut self) {
self.gvn() ;
self.rle();

self.gvn() ;

The Pass-Order Problem

 Proposed optimization pipeline:
fn optimize(&mut self) {
self.gvn();
self.rle();
self.gvn();
self.rle(); // XXX just in case

The Pass-Order Problem

» Surely other production compilers have solved this problem?

The Pass-Order Problem

» Surely other production compilers have solved this problem?

GCC:

The Pass-Order Problem

» Surely other production compilers have solved this problem?

GCC: NEXT PASS (pass cse);

The Pass-Order Problem

» Surely other production compilers have solved this problem?
NEXT PASS (pass cselim);

NEXT_PASS (pass cse si1ncos);
NEXT PASS (pass cse reciprocals);

GCC: NEXT PASS (pass_cse):
NEXT_PASS (pass cse after global opts);
NEXT_PASS (pass csel);
NEXT_PASS (pass postreload cse);

The Pass-Order Problem

» Surely other production compilers have solved this problem?

GCC: 540 lines (passes.def)

The Pass-Order Problem

(or: “Fix-point All The Things?”)

* Goal: find a way to put all (ish) of our optimizations in a single fixpoint loop

—

... Cprop, algebraic rewrites,
strength reduction, ...

The Pass-Order Problem

(or: “Fix-point All The Things?”)

* Goal: find a way to put all (ish) of our optimizations in a single fixpoint loop
« Remember: compile-cost focus! (We can’t afford to run a pass N times)

 We'd prefer not to maintain a brittle heuristic pass order
()

.. Cprop, algebralc rewrites,
strength reduction, ...

Adding some “simple” rewrites

match opcode
Opcode: : IaddImm
| Opcode: :ImulImm
| Opcode: :BorImm
| Opcode: :BandImm
| Opcode::BxorImm => {

// Fold binary_op(C2, binary_op(Cl, x)) into binary_op(binary_op(C1l, C2), x)

. 3 lueDet: :ResL g 1D = DC Inc,dfa,value deflarc

Adding some “simple” rewrites (!)

match opcode
Opcode: : IaddImm
| Opcode: :ImulImm
| Opcode: :BorImm
| Opcode: :BandImm
| Opcode::BxorImm => {
// Fold binary_op(C2, binary_op(Cl1l, x)) into binary_op(binary_op(C1l, C2), x)
if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
if let InstructionData::BinaryImm64 {
opcode: prev_opcode,
arg: prev_arg,
imm: prev_imm,

y = &pos.func.dfg.insts[arg_inst]
{

if opcode == xprev_opcode
&& ty == pos.func.dfg.ctrl_typevar(arg_inst)

let lhs: 164 = imm.into();
let rhs: 164 = (xprev_imm).into();

Adding some “simple” rewrites (!

Opcode: : ITaddImm
| Opcode: :ImulImm
| Opcode::BorImm
| Opcode::BandImm
| Opcode::BxorImm => {
// Fold binary_op(C2, binary_op(C1l, x)) into binary_op(binary_op(C1l, C2), x)
if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
if let InstructionData::BinaryImm64 {
opcode: prev_opcode,
arg: prev_arg,
imm: prev_imm,
= &pos.func.dfg.insts[arg_inst]

}
{

if opcode *kprev_opcode
& ty pos.func.dfg.ctrl_typevar(arg_inst)

let lhs: i64 = imm.into();

let rhs: i64 = (xprev_imm).into();

let new_imm = match opcode {
Opcode::BorImm => 1lhs | rhs,
Opcode::BandImm => lhs & rhs,
Opcode: :BxorImm => lhs ~ rhs,
Opcode::IaddImm => lhs.wrapping_add(rhs),
Opcode::ImulImm => lhs.wrapping_mul(rhs),
_ => panic!("can't happen"),

new_imm = immediates::Imm64::from(new_imm);
new_arg = xprev_arg;

. func

.dfg

.replace(inst)

.BinaryImmé64(opcode, ty, new_imm, new_arg);
= new_imm;

= new_arg;

Adding some simple rewrites

(rule (simplify
(iadd (fits_in 64 ty)

(iconst ty (u64_ from_imm64 k1))
(iconst ty (u64_from_imm64 k2))))
(subsume (iconst ty (imm64 masked ty (u64 _add k1l k2)))))

(Cranelift’'s ISLE term-rewriting DSL)

Adding some simple rewrites

3 1neg(ineg(x)) == X.

(rule (simplify (ineg ty (ineg ty x))) (subsume x))

Rewrite Systems for Optimization

 Many kinds of optimizations can be expressed as value rewrites

 Constant prop (1 + 2 => 3), algebraic (x + 0 => Xx), strength reduction, ...

Rewrite Systems for Optimization

 Many kinds of optimizations can be expressed as value rewrites
 Constant prop (1 + 2 => 3), algebraic (x + 0 => Xx), strength reduction, ...
 Those that can’t are often “rewrite-adjacent”
 Normalization of input terms to rewriter => GVN

* Placement of rewritten terms => LICM, code motion in general

Rewrite Systems for Optimization

 Many kinds of optimizations can be expressed as value rewrites

 Constant prop (1 + 2 => 3), algebraic (x + 0 => Xx), strength reduction, ...
 Those that can’t are often “rewrite-adjacent”

 Normalization of input terms to rewriter => GVN

* Placement of rewritten terms => LICM, code motion in general
 Rewriting is a well-defined framework that works well for verification!

* “This value is equal to that value”

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again
3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again

3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

Optimization pipeline

block@®@(vO, vl1):
v2 = jadd vO, vl
v3 = isub v0O, v2
if v3,
blockl(v2),
block2(v3)

blockl(v4) :
v = jconst 1 block2(v7):

ve = isub v4, v5 br block3(v7)
br block3(v6)

block3(v8):
return v38

Optimization pipeline

block@®@(vO, vl1):
v2 = jadd vO, vl
v3 = isub vO, v2

1if v3,

blockl(v2), - :

block2 (v3) - -

- |

- |

- |

- -

blockl(v4): - -
v> = iconst 1 block2(v7): - u
ve = isub v4, v5 br block3(v7) - |
br block3(v6) |
- |

- -

- -III= -III= -III= |

[] - [] . n : W

- :_ {7 Hi s Hie

block3(v8): | EEEEm EEEEm EEEEN -

return v8 u -
.lllllllllllll-

Optimization pipeline

block@®@(vO, vl1):
v2 = jadd vO, vl

block@®@(vO, vl1):
v2 = jadd vO, vl
v3d = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), N block2(v3)
block2 (v3) - -
m
- -
- m
: m
- - blockl(v4):
blockl(v4): - - v5 = iconst 1 block2 (v7)
v5 = iconst 1 block2 (v7): - - v6 = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) u
- m
- -
: :III= :III= :III= .
. = = = N block3(v8):
- -
g pEEEEEEEEEEEN

Optimization pipeline

block@®@(vO, vl1):
v2 = jadd vO, vl

block@®@(vO, vl1):
v2 = jadd vO, vl
v3d = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), N block2(v3)
block2 (v3) - -
m
- -
- m
: m
- - blockl(v4):
blockl(v4): - - v5 = iconst 1 block2 (v7)
v5 = iconst 1 block2 (v7): - - v6 = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) u
- m
- -
: :III= :III= :III= .
. = = = N block3(v8):
- -
g pEEEEEEEEEEEN

X+ 0=>x

Optimization pipeline

blockO(vO, vl1):
v2 = jadd vO, vl

block@O(vO, vl1):
v2 = jadd vO, vl
v3 = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), u block2(v3)
block2(v3) . :
- 0
- N
: O
- = blockl(v4):
blockl(v4): . - v5 = iconst 1 block2 (v7) :
vb = jconst 1 block2 (v7): - = ve = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) B
“ O
- 0
: :III= :III= :III= :
= :: :: :: O block3(v8):
return v38 i B
Sy EEEEEEEEEEEER

X+ 0=>x

E-graph + CFG == ???

block®(vO, v1):
v2 = jadd v0O, vl
v = 1sub v0O, v2
if v3,
blockl(v2),
block2(v3)

blockl(v4):

v = jconst 1 block2(v7):

ve = 1sub v4, v5 br block3(v7)
br block3(v6)

block3(v8):
return v38

E-graph + CFG == ??7?
grap =0

block®(vO, v1):
v2 = jadd v0O, vl
v = 1sub v0O, v2
if v3,
blockl(v2),
block2(v3)

blockl(v4):

v = jconst 1 block2(v7):

ve = 1sub v4, v5 br block3(v7)
br block3(v6)

block3(v8):
return v38

E-graph + CFG == ??7?
grap =

block®(vO, vl):
v2 = jadd v0O, vl
v = 1sub v0O, v2
if v3,
blockl(v2),
block2(v3)

\

blockl (v4) : egraph per basic block:

v = jconst 1 block2(v7):
ve = 1sub v4, v5 br block3(v7) _
br block3(v6) + simple

- limited rewrite scope
- limited sharing/amortization
- rules out control optimizations

block3(v8):
return v38

E-graph + CFG == ???

=700

block®(vO, vl):
v2 = 1add v0O, vl
v3d = isub v0O, v2

if v3,

blockl(v2),
block2(v3)

blockl(v4) :
v = jconst 1
ve = 1sub v4, v5
br block3(vb6)

block3(v8):
return v38

block2(v7/):
br block3(v7/)

E-graph + CFG == ???

=700

block®(vO, vl):
v2 = 1add v0O, vl
v3d = isub v0O, v2

if v3,

blockl(v2),
block2(v3)

blockl(v4) :
v = jconst 1
ve = 1sub v4, v5
br block3(vb6)

block3(v8):
return v38

block2(v7/):
br block3(v7/)

E-graph + CFG == ???

=700

block®(vO, vl):
v2 = 1add v0O, vl
v3d = isub v0O, v2

if v3,

blockl(v2),
block2(v3)

blockl(v4) :
v = jconst 1
ve = 1sub v4, v5
br block3(vb6)

block3(v8):
return v38

block2(v7/):
br block3(v7/)

Loop
Loop

If

L] L

E-graph + CFG == ???

Region-nodes in egraph:

+ powerful optimizations!
+ strongly normalizing

+ more compact IR

+ cheaper analysis?

- very different from CFG
(conversion overheads)
- side-effects are tricky
- Issues with irreducible
control flow

Loop
Loop

If

L] L

E-graph + CFG == ???

Region-nodes in egraph:

Loop
+ powerful optimizations! Loop
+ strongly normalizing
|

+ more compact IR
+ cheaper analysis?

|
||

- very different from CFG
(conversion overheads)
- side-effects are tricky
- Issues with irreducible
control flow

Jamey Sharp’s prototype: https://github.com/jameysharp/optir

E-graph + CFG == ???

=700

block®(vO, vl):
v2 = 1add v0O, vl
v3d = isub v0O, v2

if v3,

blockl(v2),
block2(v3)

blockl(v4) :
v = jconst 1
ve = 1sub v4, v5
br block3(vb6)

block3(v8):
return v38

block2(v7/):
br block3(v7/)

E-graph + CFG == ??7?
grap =

block®(vO, vl):

1f v3,
blockl(v2),
block2(v3)

blockl(v4) :

block2(v7/):
br block3(v7)

br block3(v6)

block3(v8):
return v8 -~

—

E-graph + CFG == ??7?
grap = —

block®(vO, vl):

1f v3,
blockl (V2)=
block2 (v3

blockl(v4) :

br block3(v6)

blOCk3(V8): EEEEEEEEEEEEEEEEEEEEEEEEEEEnnE
return v8 -~

—

E-graph + CFG == ???

block®(vO, vl):

I CFG skeleton contains:

blockl(v2),
block2(v3)

- all blocks, with blockparams
- side-effecting operators
- block terminators (branches)

blockl(v4) :

block2(v7/):
br block3(v7)

br block3(v6)

block3(v8):
return v8

E-graph + CFG == ???

egraph contains;

- blockparam values, as terminals
- all pure operators,
without associated location

E-graph + CFG == ???

block®(vO, vl):

1f v3,
blockl(v2),
block2(v3)

blockl(v4) :

block2(v7/):
br block3(v7)

br block3(v6)

block3(v8):
return v8

E-graph + CFG == ???

egraph with CFG skeleton:

+ cheap to convert to/from CFG
+ algorithmically and in implementation
+ optimizations across function scope (mostly)

- harder to express rewrites that alter side-effects
- need special support for “seeing through” blockparams

E-graph + CFG == ???

egraph with CFG skeleton:
+ cheap to convert to/from CFG
+ algorithmically and in implementation
+ optimizations across function scope (mostly)

- harder to express rewrites that alter side-effects
- need special support for “seeing through” blockparams

- 00d enough for now! (incremental approach)

Optimization pipeline

blockO(vO, vl1):
v2 = jadd vO, vl

block@O(vO, vl1):
v2 = jadd vO, vl
v3 = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), u block2(v3)
block2(v3) . :
- 0
- N
: O
- = blockl(v4):
blockl(v4): . - v5 = iconst 1 block2 (v7) :
vb = jconst 1 block2 (v7): - = ve = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) B
“ O
- 0
: :III= :III= :III= :
= :: :: :: O block3(v8):
return v38 i B
Sy EEEEEEEEEEEER

X+ 0=>x

Optimization pipeline

blockO(vO, vl1):
v2 = jadd vO, vl

block@O(vO, vl1):
v2 = jadd vO, vl
v3 = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), u block2(v3)
block2(v3) . :
- 0
- N
: O
- = blockl(v4):
blockl(v4): . - v5 = iconst 1 block2 (v7) :
vb = jconst 1 block2 (v7): - = ve = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) B
“ O
- 0
: :III= :III= :III= :
= :: :: :: O block3(v8):
return v38 i B
Sy EEEEEEEEEEEER

X+ 0=>x

Lowering to a CFG

block®(vO, vl):

1f v3,
blockl (V2)=
block2 (v3

blockl(v4) :

br block3(v6)

blOCk3(V8): EEEEEEEEEEEEEEEEEEEEEEEEEEEnnE
return v8 -~

—

Loweringtoa C

block®(vO, vl):

1f v3,
blockl (V2)=

block2 (v3

Loweringtoa C

block®(vO, vl):
v2 = ladd vO0,
vd = 1sub vO,

1f v3,
blockl(v2),
block2(v3)

v]1
V2

FG

Elaboration

block®(vO, vl):
store ecO,
return ec?2

ec4d

eclass

ecO
ec

Elaboration

block®(vO, vl):
store ecO,
return ec?2

elaborated

vO
v

ec4d

Elaboration

block®(vO, vl):
v2 = 1sub ec2, ec3
store ec@, ec4

return ec?

eclass elaborated

ecO vO
ec v

ec4 V2

* Note: assume extraction (node selection) is done already!

eclass

ecO
ec

ec2

ec4

Elaboration

block®(vO, vl):
v3 = 1add ec0,
v2 = 1sub ec2,

store ec0,
return ec?

elaborated

vO
v

v3

V2

ec4d

ecl
ec3

eclass

ecO
ec

ec2

ec4

Elaboration

block®(vO, vl):
v3d = jadd v0,
v2 = 1sub ec2,

store ec0,
return ec?

elaborated

vO
v

v3

V2

ec4d

v1
ec3

eclass

ecO
ec

ec2

ec4

Elaboration

block®(vO, vl):
v3d = jadd v0,
v2 = 1sub ec2,

store ec0,
return ec?

elaborated

vO
v

v3

V2

ec4d

v1
ec3

eclass

ecO
ec

ec2
ecd3
ec4

Elaboration

block®(vO, vl):
= jJadd v0,
v4 iconst 42

V3

V2 isub ec?,

store ec0,
return ec?

elaborated

vO
v

v3
V2!
V2

ec3
ecd

eclass

ecO
ec

ec2
ecd3
ec4

Elaboration

block®(vO, vl):
= jJadd v0,
v4 iconst 42

V3

V2 isub v3,

store ec0,
return ec?

elaborated

vO
v

v3
V2!
V2

ec4d

eclass

ecO
ec

ec2
ecd3
ec4

Elaboration

block®(vO, vl):
= jJadd v0,
v4 iconst 42

V3

V2 isub v3,
store v0,
return ec?

elaborated

vO
v

v3
V2!
V2

eclass

ecO
ec

ec2
ecd3
ec4

Elaboration

block®(vO, vl):
= jJadd v0,
v4 iconst 42

V3

V2 isub v3,
store v0,
return ec?

elaborated

vO
v

v3
V2!
V2

eclass

ecO
ec

ec2
ecd3
ec4

Elaboration

block® (v0,
v =

vl) :

iadd vO, vl

v4 iconst 42

V2 isub v3, v4

store v0,
return v3

elaborated

vO
v

v3
V2!
V2

V2

Elaboration... twice?

block®(vO, vl): -

blockl: block?2:
return ec?2 return ecé4

Elaboration... twice?

block®@(vO, vl):
v2 = jadd vO, vl ?

blockl: block?2:
return v2 v3d = iconst 42
vd = 1sub v2, v3

return v4

Elaboration... twice?

block®(vO, vl):

v2 = iadd ve, v1 | partial redundancy!

blockl:
return v?2

block?2:
v3d = 1const 42
vd = 1sub v2, v3

block?2:

return v4

.. ho use of v2 ..
return v50

SSA

block0®

block?

blockl

block3

CFG

SSA

blockO

o — T

block1 Dblock2 block3
blockl
-

block3

CFG Dominator Tree

blockO

block1 block? i block3 :

L 4
L 4
L 4
4
4
L 4
L 4
4
’0
*

all paths to B first pass through A.

* *
0’ ’0
L 4 *

L 4 *

* *

* *

G L 4

L 4
L 4
L 4
L 4
. L 4
L) L

CFG Dominator Tree

blockO

block1 block? i block3 :

L 4
L 4
L 4
4
4
L 4
L 4
4
’0
*

all paths to B first pass through A.

Dominance forms a tree.
Many compiler algorithms work

block3 |4 :
by traversing the domtree.

CFG Dominator Tree

SSA

blockO

blockO: 4r—*”’1r“‘~ﬁ;

block1 Dblock2 block3
blockl
-

block3

CFG Dominator Tree

SSA

blockO:

blockl
block?2

block3

CFG

blockO

— v
block1 Dblock2 block3

SSA: A value’s definition
dominates its uses.

Dominator Tree

blockl

v2 = ..

blockO:
vl = ..

block3
vd = ... vl ..

CFG

block?

vy = ... v1 ..

blockO

— v
block1 Dblock2 block3

SSA: A value’s definition
dominates its uses.

Dominator Tree

blockl

v2 = ..

blockO:
vl = ..

block3
vd = ... v2 ..

CFG

block?

vy = ... v1 ..

blockO

— v
block1 Dblock2 block3

SSA: A value’s definition
dominates its uses.

Dominator Tree

blockl

v2 = ..

blockO:
vl = ..

CFG

block?
vy = ... v1 ..

blockO

— v
block1 Dblock2 block3

SSA: A value’s definition
dominates its uses.

Dominator Tree

GVN

block®(vO, vl):
v2 = iadd v0O, vl

blockl

v3d = 1add v0O, vl block?2

block3

GVN

block®(vO, vl):
v2 = 1add v0O, vl

blockl

v3 = iadd v@, vl GVN (Global Value Numbering):
If an operator dominates a
duplicate copy of itself,
reuse the original.

GVN

block®(vO, vl):
v2 = 1add v0O, vl

o L GVN (Global Value Numbering)
If an operator dominates a
duplicate copy of itself,
reuse the original.

block3

GVN

blockl

v3 <-

V2

block®(vO, vl):
v2 = 1add v0O, vl

block?

block3

GVN (Global Value Numbering):
If an operator dominates a
duplicate copy of itself,
reuse the original.

Implement with
domtree preorder traversal
and a scoped map.

GVN

block®(vO, vl):
v2 = 1add v0O, vl

Implement with
domtree preorder traversal
and a scoped map.

blockl

vy <- V2 block?2

block3

Scoped Elaboration

block®(vO, vl):

blockl: block?2:
.. = Op ec2 .. = Op ecZ
return ec4d

block3:
.. = 0Op ec2

Scoped Elaboration

block®(vO, v1):

blockO

M
block1l block?2

'

blockl: block?2: block3
.. = Op ec2 .. = Op ecZ
return ec4d

block3:
.. = 0Op ec2

Scoped Elaboration

block®(vO, v1):

blockl: block?2:
.. = Op ec2 .. = Op ecZ
return ec4d

block3:
.. = 0Op ec2

block

'

block3

block?2

Scoped Elaboration
: blockO :
block1 block?2

'

blockl: block?2: block3
.. = Op ec2 .. = Op ecZ
return ec4d

eclass elaborated

block®(vO, vl):

ecO vO

block3: ec Ya

.. = 0Op ec’

Scoped Elaboration

block®(vO, vl):

blockO

:......411””}
E block E block?2

blockl: block?2: block3
.. = Op ec2 .. = Op ecZ
return ec4d

eclass elaborated

ecO vO

block3: ec v

.. = 0Op ec2

Scoped Elaboration

block®(vO, vl):

blockO

:......411””}
E block E block?2

block2: . block3
.. = Op ec2
return ec4d

eclass elaborated

ecO vO
ec v

ec2 V2

block3:
.. = 0Op ec2

Scoped Elaboration

block®(vO, vl):

blockO

4?””’}
block1l block?2

block?2: . « block3 -
.. = Op ec2 - -
return ec4

eclass elaborated

ecO vO
ec v

ec2 V2

block3:
.. = 0Op ec2

Scoped Elaboration

block®(vO, vl):

blockO

4?””’}
block1l block?2

block?2: . « block3 -
.. = Op ec2 - -
return ec4

eclass elaborated

ecO vO
ec v

ec2 V2

block3:
. = 0p V2

Scoped Elaboration

block®(vO, vl):

blockO

M
block1l block?2

blockl: block?2: : block3 :
v2 = — 0P ec’ :llllllll:
. = 0p V2 return ec4d
\ eclass elaborated
. ecO vO
block3: ec Ya

. = 0p V2
reuse! ec? V2

Scoped Elaboration

block®(vO, vl):

blockO

:......411””}
E block E block?2

block2: . block3
.. = Op ec2
return ec4d

eclass elaborated

ecO vO
ec v

ec2 V2

block3:
. = 0p V2

Scoped Elaboration
: blockO £
block1 block?2

'

block2: . block3
.. = Op ec2
return ec4d

block®(vO, vl):

eclass elaborated

ecO vO
ec v

ec2 V2

block3:
. = 0p V2

Scoped Elaboration
: blockO £
block1 block?2

'

block2: . block3
.. = Op ec2
return ec4d

block®(vO, vl):

eclass elaborated

ecO vO

block3: ec v

. = 0p V2

Scoped Elaboration

block®(vO, vl):

blockO

4:-4----:
block E block?2 E

block2: . block3
.. = Op ec2
return ec4d

eclass elaborated

ecO vO

block3: ec v

. = 0p V2

Scoped Elaboration
blockO

14—1::::k...:
block E block?2 E

block?2: . block3

vy = ..
. = 0p V3
return ec4d

block®(vO, vl):

eclass elaborated

ecO vO
ec v

ec2 V3

block3:
. = 0p V2

Scoped Elaboration

block®(vO, vl):

block1 # block2 :

| e .

block3

eclass elaborated

. ecO vO
bloc&3. ec v

. = 0p V2
ec2 V3

duplicate!

Scoped Elaboration

Scoped elaboration subsumes GVN

Scoped Elaboration

Scoped elaboration subsumes GVN
+ LICM (choose to insert higher in loopnest + scoped map)

Scoped Elaboration

Scoped elaboration subsumes GVN
+ LICM (choose to insert higher in loopnest + scoped map)
+ Rematerialization (choose to create duplicate anyway)

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again

3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again

3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

Rewrites and Repair

Rewrite: x + 0 => X

Rewrites and Repair

Rewrite: x + 0 => X

Rewrites and Repair

Rewrite: x + 0 => X

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

Parents: Parents:
_ {ec3 := (+ ecO, ec1), {ech = (+ ec3 ec?)}
FasssssssssssEsEsEEEEEEEEEEEEE : ecd = (+ ecO, ec?2)}

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

ecO, |
ec3

,IIIIIIIII. IIIIIIIIIII

Parents:
{ec3 := (+ ecO0, ec1),
ecd = (+ ecO, ec?2),
ecd = (+ ec3 ec?2)}

Rewrites and Repair

Rewrite: X + 0 => X

E Fixup requires backlinks (parent pointers)

E and re-interning, which are costly

preseerey gesneneenn ecO, |

i sl | B Re-interr

. Lereanad : R . - - 1
E _ Darents: ec3 = (+ ec0 ecT)
: {ec3 = (+ ecO0, ec1),

E ecd = (+ ecO, ec?2),

ecd := (+ ec3 ec2)}

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

ecO, |
ec3

Re-intern
ec4 = (+ ecO ec?2)

Parents:
{ec3 := (+ ecO0, ec1),
ecd = (+ ecO, ec?2),
ecd = (+ ec3 ec?2)}

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

ecO, |
ec3

Re-intern

ech = (+ ec3 ec2)
= (+ ecO ec?2)
= ec4

Parents:
{ec3 := (+ ecO0, ec1),
ecd = (+ ecO, ec?2),
ecd = (+ ec3 ec?2)}

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

Eliminate:

- Parent lists?

- Duplicated storage of nodes?

- Merging of parent lists, with dedup’ing”?

Rewrites and Repair

Rewrite: x + 0 => X

Fixup requires backlinks (parent pointers)
and re-interning, which are costly

Eliminate:

- Parent lists?

- Duplicated storage of nodes?

- Merging of parent lists, with dedup’ing”?

_ _ —> complile + memory overhead too high
FusssssssssssEEEEEEEEEEEEEEEEES : vs. traditional compiler pipeline

Rewrites and Repair

ldea: no need to repair uses Iif eclass is in final form before we use it!

Rewrites and Repair

ldea: no need to repair uses Iif eclass is in final form before we use it!

\REINTERNING IS FREE

f
44;‘
B" y

(N IFTHERE ARENO'
NODES TO RE IIE-III'I'EIIH

Rewrite eagerly?!

Rewrite eagerly?!

Rewrite eagerly?!

Rewrite eagerly?!

Rewrite already occurred
-» €C5 hash-conses to ec4

Rewrite eagerly?!

How do we handle this cycle?

Rewrite eagerly?!

How do we handle this cycle?
- Cycles preclude single pass
(imply fixpoint algorithm)

Rewrite eagerly?!

How do we handle this cycle?

- Cycles preclude single pass
(imply fixpoint algorithm)

- We’'re rewriting the arg after
its use (no longer eager)
—> need parent lists again

Cycles in E-graphs

Cycles in E-graphs

X+ 0=>X

Cycles in E-graphs

X+ 0=>X

Cycles in E-graphs

X+ 0=>X

= €0, 602 Observation:

- egraph does not record rewrite “direction”

Cycles in E-graphs

X+ 0=>X

= €0, 602 Observation:

- : - - egraph does not record rewrite “direction”
E S — : E - this egraph equivalent to

e e smsmssssEsssEsEsmEEEmnmns : - start with x

- rewrite with x =>x+ 0

Cycles in E-graphs

X+ 0=>X

ec, ec2 Observation:

- egraph does not record rewrite “direction”
- this egraph equivalent to
.............................. - start with x
- rewrite with x=>x+0
- rewrite rules that equate part to whole are
(reverse)-generative

Cycles in E-graphs

X+ 0=>X

= €0, 602 Observation:

. : - egraph does not record rewrite “direction”
S — E - this egraph equivalent to
e rsssmss s msa s nna s nnannd : - start with x
- rewrite with x =>x + 0
- rewrite rules that equate part to whole are
(reverse)-generative

Cycles occur even if original egraph is acyclic (e.g., from SSA)

Persistent immutable e-classes

Persistent immutable e-classes

- Never rewrite a node
- Represent eclasses as
trees of union nodes

Persistent immutable e-classes

- Never rewrite a node
- Represent eclasses as
trees of union nodes

Persistent immutable e-classes

- Never rewrite a node

- Represent eclasses as
trees of union nodes

- As we build the egraph, track
latest id for a given value

- Invoke rewrite rules when a node
IS created

- enter into hashcons map
with final union’d ID

Persistent immutable e-classes

Eager rewriting Acyclicity

Persistent

iImmutable
data structure

Persistent immutable e-classes

Eager rewriting Acyclicity

Persistent
Enables Immutable
(otherwise, uses data structure
don’t pick up

optimized defs)

Persistent immutable e-classes

Eager rewriting Acyclicity

\\ Persistent /
Immutable Maintains

Enables |
(otherwise, uses (creating a cycle
don’t pick up d ata structure requires mutable args)

optimized defs)

Persistent immutable e-classes

A/Allows\
L (otherwise, need to .
Eager rewriting revisit + do fixpoint) Acyclicity

Persistent
Enables Immutable Maintains
therwise, (creating a cycle
(odoi/:\;v;siiktzlspes data structure requires mutable args)

optimized defs)

E-graph vs. aegraph

egg-style egraph: agegraph:

batched rewriting + repair eager rewriting + immutable union nodes
+ Strongly normalizing - Can miss rewrites
+ Supports arbitrar”y CyC|iC (depending on rule structure)

input - Cannot support cyclic input

(e.g., seeing through phi-nodes)

- Requires parent pointers + Single-pass rewrite

and rehashing on fixup + No parent pointers

(minimal memory + maintenance

- Repair step is a fixpoint overhead)

E-graph vs. aegraph

egg-style egraph: agegraph:

batched rewriting + repair eager rewriting + immutable union nodes
+ Strongly normalizing - Can miss rewrites
+ Supports arbitrar”y CyC|iC (depending on rule structure)

input - Cannot support cyclic input

(e.g., seeing through phi-nodes)

- Requires parent pointers + Single-pass rewrite

and rehashing on fixup + No parent pointers

(minimal memory + maintenance

- Repair step is a fixpoint overhead)

- \\e can avoid batched repair because there is no repair

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites

* No catchall associativity or commutativity rewrites!

(1add a b) => (1add b a)

(1add a (1add b c))
=> (1add (1add a b) ¢)

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites

* No catchall associativity or commutativity rewrites!

ad a b) => (1add _b~~<

(1ade”a (1add™~N_C))
1add (1add a b

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites

* Only limited “non-directional” rewrites

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites

* Only limited “non-directional” rewrites

(bnot (band a b)) => (bor (bnot a) (bnot b))

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites

* Only limited “non-directional” rewrites

(bnot (band a b)) => (bor (bnot a) (bnot b))

-—P OK (part of a “strategy”: push bnots downward)

—> But let’s not also have the other direction!

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites
* No catchall associativity or commutativity rewrites!

* Only limited “non-directional” rewrites

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites
* No catchall associativity or commutativity rewrites!
* Only limited “non-directional” rewrites

* Acyclicity precludes rules that operate over blockparams (phis)

How We Write Rules

* [Two fundamental compromises: acyclicity and more targeted rewrites
* No catchall associativity or commutativity rewrites!
* Only limited “non-directional” rewrites

* Acyclicity precludes rules that operate over blockparams (phis)

These limitations are OK!
At least as powerful as traditional rewrites;
and we’ve solved phase ordering;
and we can make use of “multi-version” + cost-based extraction.

What E-graphs Gave Us

* |f not full EgSat + repair phase, what do aegraphs take from e-graphs?
* Rewriting: a powerful unifying paradigm for optimizations

 Multiple value representations: explores all rewrite paths; cost function
makes final resolution in principled way

 Sea-of-nodes IR for pure values: natural framework for code motion

The asegraph Passes

block@®@(vO, vl1):
v2 = jadd vO, vl

block@®@(vO, vl1):
v2 = jadd vO, vl
v3d = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), N block2(v3)
block2 (v3) - -
m
- -
- m
: m
- - blockl(v4):
blockl(v4): - - v5 = iconst 1 block2 (v7)
v5 = iconst 1 block2 (v7): - - v6 = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) u
- m
- -
: :III= :III= :III= .
. = = = N block3(v8):
- -
g pEEEEEEEEEEEN

X+ 0=>x

The asegraph Passes

block@®@(vO, vl1):
v2 = jadd vO, vl

block@®@(vO, vl1):
v2 = jadd vO, vl
v3d = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), N block2(v3)
block2 (v3) - -
m
- -
- m
: m
- - blockl(v4):
blockl(v4): - - v5 = iconst 1 block2 (v7)
v5 = iconst 1 block2 (v7): - - v6 = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) u
- m
- -
: :III= :III= :III= .
. = = = N block3(v8):
- -
g pEEEEEEEEEEEN

X+ 0=>x

1. Build aegraph and eagerly rewrite

The asegraph Passes

block@®@(vO, vl1):

blockO(vO, vl1): v2 = jadd vO, vl
v2 = jadd vO, vl v3 = isub vO, v2
v3 = isub v0O, v2 if v3,
if v3,

blockl(v2),
block2(v3)

E B E B EEEEEEEERN blockl(v2),
block2(v3)

blockl(v4):

v = jconst 1 block2(v7):

ve = isub v4, v5 br block3(v7)
br block3(v6)

blockl(v4):

vb = 1dconst 1 block2 (v7):

ve = isub v4, v5 br block3(v7)
br block3(v6)

block3(v8):
return v8

block3(v8):
return v38

X+ 0=>x

2. Perform extraction

The asegraph Passes

block@®@(vO, vl1):
v2 = jadd vO, vl
v3 = isub vO, v2
if v3, E BB EEEBEEEEEREN.
blockl(v2),
block2(v3)

blockO(vO, vl1):
v2 = jadd vO0,
v3 = isub vO0,
if v3,
blockl(v2),
block2(v3)

blockl(v4):

vb = jconst 1 block2(v7):

ve = isub v4, v5 br block3(v7)
br block3(v6)

blockl(v4):

vb = 1dconst 1 block2 (v7):

ve = isub v4, v5 br block3(v7)
br block3(v6)

block3(v8):
return v8

block3(v8):
return v38
E B EEEEEEEEEERN

-Greedy heuristic

X+ 0=>X -Dynamic programming
(single pass)

2. Perform extraction

The asegraph Passes

block@®@(vO, vl1):
v2 = jadd vO, vl

block@®@(vO, vl1):
v2 = jadd vO, vl
v3d = isub v0O, v2

v3 = isub v0O, v2 if v3,
if v3, HEEEEEEEEEEEEEN, blockl(v2),
blockl(v2), N block2(v3)
block2 (v3) - -
m
- -
- m
: m
- - blockl(v4):
blockl(v4): - - v5 = iconst 1 block2 (v7)
v5 = iconst 1 block2 (v7): - - v6 = isub v4, v5 br block3(v7)
ve = isub v4, v5 br block3(v7) - u br block3(v6)
br block3(v6) u
- m
- -
: :III= :III= :III= .
. = = = N block3(v8):
- -
g pEEEEEEEEEEEN

X+ 0=>x

3. Scoped elaboration

The asegraph Passes

1. Build and rewrite
2. Extraction
3. Scoped elaboration

—P [hree linear passes, no fix-point loops

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again

3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again
3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

Performance

Performance

SpiderMonkey.wasm
11% faster runtime

2% longer compile-time

Performance

SpiderMonkey.wasm
11% faster runtime

2% longer compile-time
oy
3% higher runtime

2% faster compile-time

Performance
Speedups

gimli
spidermonkey
MINICSV
ratelimit
switch

fib2

Intgemm

22%
11%
9%
8%
3%
3%
1%

Performance
Speedups

gimli
spidermonkey
MINICSV
ratelimit
switch

fib2

Intgemm

22%
11%
9%
8%
3%
3%
1%

Slowdowns
random -31%
hex-simd -16%
meshoptimizer -14%
ed25519 -13%
blake3-simd -6%
keccak -4%
bz2 -3%

Performance

* |nstruction scheduling: #6260

* Missing opt rules
- Magic div constants: #6049

Slowdowns
random -31%
hex-simd -16%
meshoptimizer -14%
ed25519 -13%
blake3-simd -6%
keccak -4%

bz2 -3%

https://github.com/bytecodealliance/wasmtime/issues/6260
https://github.com/bytecodealliance/wasmtime/issues/6049

Performance

bjorn3 commented on Dec 14, 2022

| just did some benchmarking of egraphs and the perf improvement is huge on the benchmark | tried:

Benchmark 1: ./raytracer_cg_clif
Time (mean * o0): 8.553 s + 0.010 [User: 8.539
Range (min .. max): 8.543 s .. 8.568 s 10 runs

Benchmark 2: ./raytracer_cg_clif_egraph
Time (mean * o0): 6.068 s + 0.017 [User: 6.057
Range (min .. max): 6.047 s .. 6.108 s 10 runs

Benchmark 3: ./raytracer_cg_clif_release
Time (mean % o): 6.450 s + 0.021 [User: 6.439
Range (min .. max): 6.410 s .. 6.482 10 runs

Benchmark 4: ./raytracer_cg_clif_release_egraph
Time (mean * o): 5.853 s £+ 0.053 s [User: 5.841
Range (min .. max): 5.779 s .. 5.908 s 10 runs

Summary
‘./raytracer_cg_clif_release_egraph' ran
1.04 + 0.01 times faster than './raytracer_cg_clif_egraph’
1.10 * 0.01 times faster than './raytracer_cg_clif_release’
1.46 + 0.01 times faster than './raytracer_cg_clif’

Project Health & Enablement

PRs to add mid-end opts

Time =———

Project Health & Enablement

egraph-based mid-end

|

Time =———

PRs to add mid-end opts

Project Health & Enablement

egraph-based mid-end

|

Time =———

PRs to add mid-end opts

Project Health & Enablement

Optimize sign extension via shifts (#6220)

egraphs: Add "bmask bit pattern optimization rule (#6196)

Add "multi _lane precondition to bitselect => "{u,s}{min,max} rewrite (#6201)
ISLE: simplify select/bitselect when both choices are the same (#6141)

Add egraph cprop optimizations for "splat (#6148)

ISLE: rewrite loose 1inequalities to strict inequalities and strict inequalities to equalities (#6130)
ISLE: rewrite "and / or of “icmp (#6095)

ISLE: add synonyms for all variations of “icmp (#6081)

cranelift: rewrite " iabs(ineg(x)) and " iabs(iabs(x)) (#6072)

cranelift: rewrite x*-1 to "ineg(x) (#6052)

craneleft: cancel "ineg when args to imul (#6053)

cranelift: simplify "icmp against UMAX/SMIN/SMAX (#6037)

cranelift: simplify x-x to 0 (#6032)

cranelift: simplify fneg(fneg(x)) to x (#6034)

cranelift: simplify " ineg(ineg(x)) to x (#6033)

Add egraph optimization for fneg's cancelling out (#5910)

Cranelift: Generalize (x << k) >> k optimization (#5746)

cranelift: Optimize "select+icmp 1into {s,u}{min,max} (#5546)

Cranelift: Collapse double extends into a single extend (#5772)

Generalize and/or/xor optimizations (#5744)

Algebraic opts: Reuse "iconst 0 from LHS (#5724)

Add some minor souper-harvested optimizations (#5735)

Cranelift: Only build iconst for i1ints <= 64 bits (#5723)

Legalize "b{and,or,xor} not into component instructions (#5709)
egraphs/cprop: Don't extend constants to 1128 (#5717)

Generalize u/sextend constant folding to all types (#5706)

Cranelift: Correctly wrap shifts 1n constant propagation (#5695)
Constant-fold icmp instructions (#5666)

Cranelift: Rewrite "or(and(x, y), not(y)) => or(x, not(y)) (#5676)
Cranelift: Rewrite "~ (x>>k)<<k 1into masking off the bottom "k Dbits (#5673)
Cranelift: constant propagate shifts (#5671)

Cranelift: Add egraph rule to rewrite x * C ==> x << 10g2(C) when C 1is a power of two (#5647)
egraph opt rules: do (icmp cc x x) == {0,1} only for integer types. (#5438)

PRs to add mid-end opts

Project Health & Enablement

PRs to add mid-end opts

Optimize sign extension via shifts (#6220)
egraphs: Add "bmask bit pattern optimization rule (#6196)

Add "multi lane precondition to bitselect => "{u,s}{min,max}"

rewrite (#6201)

ISLE: simplify select/bitselect when both choices are the same (#6141)

Add egraph

cprop optimizations for "splat (#6148)

ISLE: rewrite loose 1inequalities to strict inequalities and strict inequalities to equalities (#6130)
ISLE: rewrite "and / or of “icmp (#6095)

ISLE: add

cranelift:
cranelift:
craneleft:
cranelift:
cranelift:
cranelift:
cranelift:
Add egraph
Cranelift:
cranelift:
Cranelift:
Generalize

synonyms for all variations of “icmp (#6081)

rewrite " iabs(ineg(x)) and " iabs(iabs(x)) (#6072)
rewrite x*-1 to "ineg(x) (#6052)

cancel "ineg when args to "imul (#6053)

simplify “icmp against UMAX/SMIN/SMAX (#6037)
simplify "x-x to 0 (#6032)

simplify "fneg(fneg(x)) to x (#6034)

simplify “ineg(ineg(x)) to x (#6033)

optimization for fneg's cancelling out (#5910)
Generalize (x << k) >> k optimization (#5746)
Optimize " select+icmp 1into {s,u}{min,max} (#5546)
Collapse double extends into a single extend (#5772)
and/or/xor optimizations (#5744)

Algebraic opts: Reuse "iconst 0 from LHS (#5724)
Add some minor souper-harvested optimizations (#5735)

Cranelift;

Legalize "b{and,or,xor} not’

Only build i1const for 1ints <= 64 bits (#5723)

egraphs/cprop: Don't extend constants to 1128 (#5717)
Generalize u/sextend constant folding to all types (#5706)

Cranelift;

Correctly wrap shifts in constant propagation (#5695)

Constant-fold icmp instructions (#5666)
Rewrite "or(and(x, y), not(y)) => or(x, not(y)) (#5676)

Cranelift:
Cranelift:
Cranelift:
Cranelift:

Rewrite ~(x>>k)<<k 1into masking off the bottom "k’
constant propagate shifts (#5671)

into component instructions (#5709)

33 PRs In 5 months

... from 8 authors!

bits (#5673)

Add egraph rule to rewrite x * C ==> x << 10g2(C) when C 1is a power of two (#5647)
egraph opt rules: do (icmp cc x x) == {0,1} only for integer types. (#5438)

Project Health & Enablement

;3 A reduction-of—-an-extend back to the same original type 1s the same as not
;3 actually doing the extend in the first place.

(rule (simplify (ireduce ty (sextend _ x @ (value_type ty))))
(rule (simplify (ireduce ty (uextend _ x @ (value_type ty))))

Nobody would take the time to write a manual pass to do that!

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

A: By doing nearly the same amount of work!

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

A: By doing nearly the same amount of work!

 E-graph interning = GVN

 E-nodes are stored as instructions (same data structure)

* |nitially, rewrites in egraph are equivalent to old pipeline

Performance: Qualitative Discussion

Q: How did we achieve near-parity?
A: By doing nearly the same amount of work!

» Differences: code placement (reconstruct all vs. incremental)
multi-version (selection, rewrite multiple paths)

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

A: By doing nearly the same amount of work!

“Pay as you go” is crucial for incremental adoption!

Possible Future Plans

* |[nstruction selector as extraction pass
* We have left-hand-side patterns for what the ISA can do efficiently
 Why not lower directly from eclasses?

« Somewhat complex interactions with scoped elaboration + pass direction

Possible Future Plans

* Optimization through block parameters (phi-nodes)

» Sparse conditional constant propagation! Unify branch-folding + const-
Prop

* Challenge: deal with cycles

* Are there limited forms that operate in a single pass? (skip if backedge?)

Possible Future Plans

 Non-greedy instruction selection
* We do extraction before elaboration
 Optimal extraction depends on elaboration:
 multiple uses of a value can “share” its cost

e |f another inst needs a value that is expensive, it becomes sunk cost

Possible Future Plans

 Fused / unrolled rewrites
* We have efficient rule dispatch (decision tree), but only one step at a time
e Can we statically unroll a path of rewrites?

* ... and even elide insertion of intermediates if we know they’re “bad” (more
expensive, always subsumed)?

Possible Future Plans

* |nstruction scheduling
 The agraph throws away location information
e Scoped elaboration recomputes it
 The “as late as possible” schedule that results is often quite bad

* Heuristics from (i) register pressure, (ii) original code order, (iii) other?

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again
3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

1. Why we want a rewrite-based optimizer

2. How to turn a CFG into an egraph and back again
3. Cycles why they occur, and what to do about them
4. Results how well does it work?

5. Lessons In translating research to production

Efficiency

e This Is really important in production software

* Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

Efficiency

e This Is really important in production software

* Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

* There is inherent tension w.r.t. moving fast + experimenting to “just get
results”, but “algorithm is robustly fast” is its own kind of result too

Efficiency

e This Is really important in production software

* Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

* There is inherent tension w.r.t. moving fast + experimenting to “just get
results”, but “algorithm is robustly fast” is its own kind of result too

* Robustness/predictability is important (and distinct from “fast on average”)

Efficiency

e This Is really important in production software

* Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

* There is inherent tension w.r.t. moving fast + experimenting to “just get
results”, but “algorithm is robustly fast” is its own kind of result too

* Robustness/predictability is important (and distinct from “fast on average”)

* We (practicing software engineers) need to do a better job of documenting “all
the usual tricks™!

Limits Induce Creativity

* This work in Cranelift started with “standard” e-graphs and egg
 When it wasn’t fast enough, | could have stopped and moved on!

* Requires the “correct” amount of unjustified optimism

Limits Induce Creativity

e “Bottom-up” vs. “top-down” thinking
* “| want to do egsat” —> optimize all the computation needed for this, vs...
* | tried this first!

* ... “I have N linear passes” —> which ideas can | keep?

Tradeoffs... and Incrementalism

* |t’'s OK to not solve the entire problem!
* The only real requirement Is that we run the program correctly”

e Sometimes “this is the best point on the effort Pareto curve” and we’re done

Tradeoffs... and Incrementalism

* |t’'s OK to not solve the entire problem!

* The only real requirement Is that we run the program correctly”
e Sometimes “this is the best point on the effort Pareto curve” and we’re done
« Sometimes, we can come up with better ideas later

* And this happens all the time in Cranelift

* View the codebase as a living, evolving understanding of problem domain

Tradeoffs... and Incrementalism

® Design for incrementalism by:
e Building frameworks (rewrite language/infra, ...)

e Building guardrails (good testing, typesafe abstractions, well-documented
iInvariants)

Tradeoffs... and Incrementalism

® Design for incrementalism by:
e Building frameworks (rewrite language/infra, ...)

e Building guardrails (good testing, typesafe abstractions, well-documented
iInvariants)

e Accept limits and ship, then fulfill last 20% of needs while plane is flying

Community Leverage Multipliers

o |et’s talk about “design for ___ " a bit more

Community Leverage Multipliers

o |et’s talk about “design for ___ " a bit more

* Design for community: find abstractions that allow modular, typesafe work
and enable many uses (verification!)

Community Leverage Multipliers

o |et’s talk about “design for ___ " a bit more

* Design for community: find abstractions that allow modular, typesafe work
and enable many uses (verification!)

* We picked up the e-graph idea because
e |t’s a clean abstraction
|t allows modular, easy contributions of mid-end optimizations

|t bridges the gap with academia a bit and pulls in new ideas

E-graphs... in Industry?

* |sn’t this bona-fide research? Am | not a software engineer in... industry??

E-graphs... in Industry?

* |sn’t this bona-fide research? Am | not a software engineer in... industry??

o Secret: software engineering is full of research problems

® (Caveat: pick a domain like compilers

» Different kinds of problems with different considerations

E-graphs... in Industry?

* |sn’t this bona-fide research? Am | not a software engineer in... industry??

o Secret: software engineering is full of research problems

® (Caveat: pick a domain like compilers
» Different kinds of problems with different considerations
» Different approach to risk; later in pipeline, less speculative

* (thank you for exploring e-graphs first!)

E-graphs... in Industry?

 Research is totally relevant to industry if it addresses industry’s needs: robust,
reliable, simple, reliable, fast, reliable

E-graphs... in Industry?

 Research is totally relevant to industry if it addresses industry’s needs: robust,
reliable, simple, reliable, fast, reliable

* |ndustry sometimes presents opportunities to rethink key infra (e.g. compiler)
* |t can be hard to convincingly make a case for this in a vacuum in academia

* But good reasons exist (security, simplicity, agility, ...)!

E-graphs... in Industry?

 Research is totally relevant to industry if it addresses industry’s needs: robust,
reliable, simple, reliable, fast, reliable

* |ndustry sometimes presents opportunities to rethink key infra (e.g. compiler)
* |t can be hard to convincingly make a case for this in a vacuum in academia
* But good reasons exist (security, simplicity, agility, ...)!

 Academia is idea-rich and searches for problems/motivations;
Industry is problem-rich and searches for ideas/solutions

* Bridging the two is incredibly fruitful and rewarding!

Work with Cranelift!

 We love mentoring students and collaborating with researchers

» \erification (VerilSLE, Veriwasm, ...); chaos-mode randomized testing;

exceptions; typed func-refs; e-graph-based fuzzing mutators; extensions of
custom DSLs: ...

* There are many open problems and the need to solve them Is iImmediate
and directly motivated

* |t’'s how we can work “smarter not harder” and keep in the game, as an
underdog — we all win!

Thanks!

e Links

e https://cranelift.dev/

o https://bytecodealliance.zulipchat.com/

» https://cftallin.org/

https://cranelift.dev/
https://bytecodealliance.zulipchat.com/
https://cfallin.org/

