
Chris Fallin (Fastly)
EGRAPHS 2023
chris@cfallin.org

ægraphs: Acyclic E-graphs
for Efficient Optimization in a Production Compiler

mailto:chris@cfallin.org

In the beginning, there was a compiler backend…

Cranelift

Cranelift

• Open-source general-purpose optimizing compiler backend

• Written in Rust + a pattern-matching DSL (~200KLoC, ~130KLoC tests)

• SSA input, four ISAs (x86-64, aarch64, riscv64, s390x)

Cranelift

• Open-source general-purpose optimizing compiler backend

• Written in Rust + a pattern-matching DSL (~200KLoC, ~130KLoC tests)

• SSA input, four ISAs (x86-64, aarch64, riscv64, s390x)

• Used in production as part of Wasmtime

• O(3-5) active developers at any time

Cranelift

• Speed: JIT focus

• Simplicity: “not LLVM”

• Verifiability: explicitly design with fuzzing + formal techniques + … in mind

• Research-friendliness: we need new ideas to compete with larger peers

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

Cranelift, circa mid-2022

• Focus on codegen quality & mid-end optimizations

• We had: GVN, constant folding, LICM, some simple rewrites

Cranelift, circa mid-2022

• Focus on codegen quality & mid-end optimizations

• We had: GVN, constant folding, LICM, some simple rewrites

v1 = …

v2 = iadd_imm v1, 16

…

v10 = iadd_imm v1, 16

v1 = …

v2 = iadd_imm v1, 16

…

v10 -> v2

Cranelift, circa mid-2022

• Focus on codegen quality & mid-end optimizations

• We had: GVN, constant folding, LICM, some simple rewrites

• We added: alias analysis => redundant load elim + store-to-load forwarding

Cranelift, circa mid-2022

• Focus on codegen quality & mid-end optimizations

• We had: GVN, constant folding, LICM, some simple rewrites

• We added: alias analysis => redundant load elim + store-to-load forwarding
v1 = …

v2 = load.i64 v1+8

…

v10 = load.i64 v1+8

v1 = …

v2 = load.i64 v1+8

…

v10 -> v2

The Pass-Order Problem

• What do we do with this program?

v1 = …

v2 = iadd_imm v1, 16

v3 = load.i64 v2

…

v10 = iadd_imm v1, 16

v11 = load.i64 v10

The Pass-Order Problem

• What do we do with this program?

v1 = …

v2 = iadd_imm v1, 16

v3 = load.i64 v2

…

v10 -> v2

v11 = load.i64 v10

GVN

The Pass-Order Problem

• What do we do with this program?

v1 = …

v2 = iadd_imm v1, 16

v3 = load.i64 v2

…

v10 -> v2

v11 -> v3

GVN

RLE

The Pass-Order Problem

• What do we do with this program?

v1 = …

v2 = load.i64 v1+8

v3 = iadd v2, v1

…

v10 = load.i64 v1+8

v11 = iadd v10, v1

The Pass-Order Problem

• What do we do with this program?

v1 = …

v2 = load.i64 v1+8

v3 = iadd v2, v1

…

v10 -> v2

v11 -> v3

RLE

GVN

The Pass-Order Problem

• Proposed optimization pipeline:

fn optimize(&mut self) {

 self.gvn();

 self.rle();

 self.gvn();

}

The Pass-Order Problem

• Proposed optimization pipeline:

fn optimize(&mut self) {

 self.gvn();

 self.rle();

 self.gvn();

 self.rle(); // XXX just in case

}

The Pass-Order Problem

• Surely other production compilers have solved this problem?

The Pass-Order Problem

• Surely other production compilers have solved this problem?

GCC:

The Pass-Order Problem

• Surely other production compilers have solved this problem?

NEXT_PASS (pass_cse);GCC:

The Pass-Order Problem

• Surely other production compilers have solved this problem?
NEXT_PASS (pass_cselim);
…
NEXT_PASS (pass_cse_sincos);
NEXT_PASS (pass_cse_reciprocals);
…
NEXT_PASS (pass_cse);
…
NEXT_PASS (pass_cse_after_global_opts);
…
NEXT_PASS (pass_cse2);
…
NEXT_PASS (pass_postreload_cse);

GCC:

The Pass-Order Problem

• Surely other production compilers have solved this problem?
/* Description of pass structure
 Copyright (C) 1987-2023 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */

/*
 Macros that should be defined when using this file:
 INSERT_PASSES_AFTER (PASS)
 PUSH_INSERT_PASSES_WITHIN (PASS)
 POP_INSERT_PASSES ()
 NEXT_PASS (PASS)
 TERMINATE_PASS_LIST (PASS)
 */

 /* All passes needed to lower the function into shape optimizers can
 operate on. These passes are always run first on the function, but
 backend might produce already lowered functions that are not processed
 by these passes. */
 INSERT_PASSES_AFTER (all_lowering_passes)
 NEXT_PASS (pass_warn_unused_result);
 NEXT_PASS (pass_diagnose_omp_blocks);
 NEXT_PASS (pass_diagnose_tm_blocks);
 NEXT_PASS (pass_omp_oacc_kernels_decompose);
 NEXT_PASS (pass_lower_omp);
 NEXT_PASS (pass_lower_cf);
 NEXT_PASS (pass_lower_tm);
 NEXT_PASS (pass_refactor_eh);
 NEXT_PASS (pass_lower_eh);
 NEXT_PASS (pass_coroutine_lower_builtins);
 NEXT_PASS (pass_build_cfg);
 NEXT_PASS (pass_warn_function_return);
 NEXT_PASS (pass_coroutine_early_expand_ifns);
 NEXT_PASS (pass_expand_omp);
 NEXT_PASS (pass_build_cgraph_edges);
 TERMINATE_PASS_LIST (all_lowering_passes)

 /* Interprocedural optimization passes. */
 INSERT_PASSES_AFTER (all_small_ipa_passes)
 NEXT_PASS (pass_ipa_free_lang_data);
 NEXT_PASS (pass_ipa_function_and_variable_visibility);
 NEXT_PASS (pass_build_ssa_passes);
 PUSH_INSERT_PASSES_WITHIN (pass_build_ssa_passes)
 NEXT_PASS (pass_fixup_cfg);
 NEXT_PASS (pass_build_ssa);
 NEXT_PASS (pass_walloca, /*strict_mode_p=*/true);
 NEXT_PASS (pass_warn_printf);
 NEXT_PASS (pass_warn_nonnull_compare);
 NEXT_PASS (pass_early_warn_uninitialized);
 NEXT_PASS (pass_warn_access, /*early=*/true);
 NEXT_PASS (pass_ubsan);
 NEXT_PASS (pass_nothrow);
 NEXT_PASS (pass_rebuild_cgraph_edges);
 POP_INSERT_PASSES ()

 NEXT_PASS (pass_local_optimization_passes);
 PUSH_INSERT_PASSES_WITHIN (pass_local_optimization_passes)
 NEXT_PASS (pass_fixup_cfg);
 NEXT_PASS (pass_rebuild_cgraph_edges);
 NEXT_PASS (pass_local_fn_summary);
 NEXT_PASS (pass_early_inline);
 NEXT_PASS (pass_warn_recursion);
 NEXT_PASS (pass_all_early_optimizations);
 PUSH_INSERT_PASSES_WITHIN (pass_all_early_optimizations)

 NEXT_PASS (pass_remove_cgraph_callee_edges);
 NEXT_PASS (pass_early_object_sizes);
 /* Don't record nonzero bits before IPA to avoid
 using too much memory. */
 NEXT_PASS (pass_ccp, false /* nonzero_p */);
 /* After CCP we rewrite no longer addressed locals into SSA
 form if possible. */
 NEXT_PASS (pass_forwprop);

 NEXT_PASS (pass_early_thread_jumps, /*first=*/true);
 NEXT_PASS (pass_sra_early);
 /* pass_build_ealias is a dummy pass that ensures that we
 execute TODO_rebuild_alias at this point. */
 NEXT_PASS (pass_build_ealias);
 NEXT_PASS (pass_fre, true /* may_iterate */);
 NEXT_PASS (pass_early_vrp);
 NEXT_PASS (pass_merge_phi);

 NEXT_PASS (pass_dse);
 NEXT_PASS (pass_cd_dce, false /* update_address_taken_p */);
 NEXT_PASS (pass_phiopt, true /* early_p */);
 NEXT_PASS (pass_tail_recursion);
 NEXT_PASS (pass_if_to_switch);
 NEXT_PASS (pass_convert_switch);
 NEXT_PASS (pass_cleanup_eh);
 NEXT_PASS (pass_profile);
 NEXT_PASS (pass_local_pure_const);
 NEXT_PASS (pass_modref);
 /* Split functions creates parts that are not run through
 early optimizations again. It is thus good idea to do this
 late. */
 NEXT_PASS (pass_split_functions);
 NEXT_PASS (pass_strip_predict_hints, true /* early_p */);

 POP_INSERT_PASSES ()
 NEXT_PASS (pass_release_ssa_names);
 NEXT_PASS (pass_rebuild_cgraph_edges);
 NEXT_PASS (pass_local_fn_summary);
 POP_INSERT_PASSES ()

 NEXT_PASS (pass_ipa_remove_symbols);
 NEXT_PASS (pass_ipa_oacc);
 PUSH_INSERT_PASSES_WITHIN (pass_ipa_oacc)
 NEXT_PASS (pass_ipa_pta);
 /* Pass group that runs when the function is an offloaded function

 containing oacc kernels loops. */
 NEXT_PASS (pass_ipa_oacc_kernels);
 PUSH_INSERT_PASSES_WITHIN (pass_ipa_oacc_kernels)

 NEXT_PASS (pass_oacc_kernels);
 PUSH_INSERT_PASSES_WITHIN (pass_oacc_kernels)
 NEXT_PASS (pass_ch);
 NEXT_PASS (pass_fre, true /* may_iterate */);
 /* We use pass_lim to rewrite in-memory iteration and reduction

 variable accesses in loops into local variables accesses. */
 NEXT_PASS (pass_lim);
 NEXT_PASS (pass_dominator, false /* may_peel_loop_headers_p */);
 NEXT_PASS (pass_dce);
 NEXT_PASS (pass_parallelize_loops, true /* oacc_kernels_p */);
 NEXT_PASS (pass_expand_omp_ssa);
 NEXT_PASS (pass_rebuild_cgraph_edges);
 POP_INSERT_PASSES ()

 POP_INSERT_PASSES ()
 POP_INSERT_PASSES ()

 NEXT_PASS (pass_target_clone);
 NEXT_PASS (pass_ipa_auto_profile);
 NEXT_PASS (pass_ipa_tree_profile);
 PUSH_INSERT_PASSES_WITHIN (pass_ipa_tree_profile)
 NEXT_PASS (pass_feedback_split_functions);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_ipa_free_fn_summary, true /* small_p */);
 NEXT_PASS (pass_ipa_increase_alignment);
 NEXT_PASS (pass_ipa_tm);
 NEXT_PASS (pass_ipa_lower_emutls);
 TERMINATE_PASS_LIST (all_small_ipa_passes)

 INSERT_PASSES_AFTER (all_regular_ipa_passes)
 NEXT_PASS (pass_analyzer);
 NEXT_PASS (pass_ipa_odr);
 NEXT_PASS (pass_ipa_whole_program_visibility);
 NEXT_PASS (pass_ipa_profile);
 NEXT_PASS (pass_ipa_icf);
 NEXT_PASS (pass_ipa_devirt);
 NEXT_PASS (pass_ipa_cp);
 NEXT_PASS (pass_ipa_sra);
 NEXT_PASS (pass_ipa_cdtor_merge);
 NEXT_PASS (pass_ipa_fn_summary);
 NEXT_PASS (pass_ipa_inline);
 NEXT_PASS (pass_ipa_pure_const);
 NEXT_PASS (pass_ipa_modref);
 NEXT_PASS (pass_ipa_free_fn_summary, false /* small_p */);
 NEXT_PASS (pass_ipa_reference);
 /* This pass needs to be scheduled after any IP code duplication. */
 NEXT_PASS (pass_ipa_single_use);
 /* Comdat privatization come last, as direct references to comdat local
 symbols are not allowed outside of the comdat group. Privatizing early
 would result in missed optimizations due to this restriction. */
 NEXT_PASS (pass_ipa_comdats);
 TERMINATE_PASS_LIST (all_regular_ipa_passes)

 /* Simple IPA passes executed after the regular passes. In WHOPR mode the
 passes are executed after partitioning and thus see just parts of the
 compiled unit. */
 INSERT_PASSES_AFTER (all_late_ipa_passes)
 NEXT_PASS (pass_ipa_pta);
 NEXT_PASS (pass_omp_simd_clone);
 TERMINATE_PASS_LIST (all_late_ipa_passes)

 /* These passes are run after IPA passes on every function that is being
 output to the assembler file. */
 INSERT_PASSES_AFTER (all_passes)
 NEXT_PASS (pass_fixup_cfg);
 NEXT_PASS (pass_lower_eh_dispatch);
 NEXT_PASS (pass_oacc_loop_designation);
 NEXT_PASS (pass_omp_oacc_neuter_broadcast);
 NEXT_PASS (pass_oacc_device_lower);
 NEXT_PASS (pass_omp_device_lower);
 NEXT_PASS (pass_omp_target_link);
 NEXT_PASS (pass_adjust_alignment);
 NEXT_PASS (pass_all_optimizations);
 PUSH_INSERT_PASSES_WITHIN (pass_all_optimizations)
 NEXT_PASS (pass_remove_cgraph_callee_edges);
 /* Initial scalar cleanups before alias computation.

 They ensure memory accesses are not indirect wherever possible. */
 NEXT_PASS (pass_strip_predict_hints, false /* early_p */);
 NEXT_PASS (pass_ccp, true /* nonzero_p */);
 /* After CCP we rewrite no longer addressed locals into SSA

 form if possible. */
 NEXT_PASS (pass_object_sizes);
 NEXT_PASS (pass_post_ipa_warn);
 /* Must run before loop unrolling. */
 NEXT_PASS (pass_warn_access, /*early=*/true);
 NEXT_PASS (pass_complete_unrolli);
 NEXT_PASS (pass_backprop);
 NEXT_PASS (pass_phiprop);
 NEXT_PASS (pass_forwprop);
 /* pass_build_alias is a dummy pass that ensures that we

 execute TODO_rebuild_alias at this point. */
 NEXT_PASS (pass_build_alias);
 NEXT_PASS (pass_return_slot);
 NEXT_PASS (pass_fre, true /* may_iterate */);
 NEXT_PASS (pass_merge_phi);
 NEXT_PASS (pass_thread_jumps_full, /*first=*/true);
 NEXT_PASS (pass_vrp, true /* warn_array_bounds_p */);
 NEXT_PASS (pass_dse);
 NEXT_PASS (pass_dce);
 /* pass_stdarg is always run and at this point we execute
 TODO_remove_unused_locals to prune CLOBBERs of dead

 variables which are otherwise a churn on alias walkings. */
 NEXT_PASS (pass_stdarg);
 NEXT_PASS (pass_call_cdce);
 NEXT_PASS (pass_cselim);
 NEXT_PASS (pass_copy_prop);
 NEXT_PASS (pass_tree_ifcombine);
 NEXT_PASS (pass_merge_phi);
 NEXT_PASS (pass_phiopt, false /* early_p */);
 NEXT_PASS (pass_tail_recursion);
 NEXT_PASS (pass_ch);
 NEXT_PASS (pass_lower_complex);
 NEXT_PASS (pass_sra);
 /* The dom pass will also resolve all __builtin_constant_p calls
 that are still there to 0. This has to be done after some

 propagations have already run, but before some more dead code
 is removed, and this place fits nicely. Remember this when
 trying to move or duplicate pass_dominator somewhere earlier. */

 NEXT_PASS (pass_thread_jumps, /*first=*/true);
 NEXT_PASS (pass_dominator, true /* may_peel_loop_headers_p */);
 /* Threading can leave many const/copy propagations in the IL.

 Clean them up. Failure to do so well can lead to false
 positives from warnings for erroneous code. */

 NEXT_PASS (pass_copy_prop);
 /* Identify paths that should never be executed in a conforming

 program and isolate those paths. */
 NEXT_PASS (pass_isolate_erroneous_paths);
 NEXT_PASS (pass_reassoc, true /* early_p */);
 NEXT_PASS (pass_dce);
 NEXT_PASS (pass_forwprop);
 NEXT_PASS (pass_phiopt, false /* early_p */);
 NEXT_PASS (pass_ccp, true /* nonzero_p */);
 /* After CCP we rewrite no longer addressed locals into SSA

 form if possible. */
 NEXT_PASS (pass_expand_powcabs);
 NEXT_PASS (pass_optimize_bswap);
 NEXT_PASS (pass_laddress);
 NEXT_PASS (pass_lim);
 NEXT_PASS (pass_walloca, false);
 NEXT_PASS (pass_pre);
 NEXT_PASS (pass_sink_code, false /* unsplit edges */);
 NEXT_PASS (pass_sancov);
 NEXT_PASS (pass_asan);
 NEXT_PASS (pass_tsan);
 NEXT_PASS (pass_dse, true /* use DR analysis */);
 NEXT_PASS (pass_dce);
 /* Pass group that runs when 1) enabled, 2) there are loops

 in the function. Make sure to run pass_fix_loops before
 to discover/remove loops before running the gate function
 of pass_tree_loop. */

 NEXT_PASS (pass_fix_loops);
 NEXT_PASS (pass_tree_loop);
 PUSH_INSERT_PASSES_WITHIN (pass_tree_loop)
 /* Before loop_init we rewrite no longer addressed locals into SSA

 form if possible. */
 NEXT_PASS (pass_tree_loop_init);
 NEXT_PASS (pass_tree_unswitch);
 NEXT_PASS (pass_scev_cprop);
 NEXT_PASS (pass_loop_split);
 NEXT_PASS (pass_loop_versioning);
 NEXT_PASS (pass_loop_jam);
 /* All unswitching, final value replacement and splitting can expose
 empty loops. Remove them now. */
 NEXT_PASS (pass_cd_dce, false /* update_address_taken_p */);
 NEXT_PASS (pass_iv_canon);
 NEXT_PASS (pass_loop_distribution);
 NEXT_PASS (pass_linterchange);
 NEXT_PASS (pass_copy_prop);
 NEXT_PASS (pass_graphite);
 PUSH_INSERT_PASSES_WITHIN (pass_graphite)
 NEXT_PASS (pass_graphite_transforms);
 NEXT_PASS (pass_lim);
 NEXT_PASS (pass_copy_prop);
 NEXT_PASS (pass_dce);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_parallelize_loops, false /* oacc_kernels_p */);
 NEXT_PASS (pass_expand_omp_ssa);
 NEXT_PASS (pass_ch_vect);
 NEXT_PASS (pass_if_conversion);
 /* pass_vectorize must immediately follow pass_if_conversion.
 Please do not add any other passes in between. */
 NEXT_PASS (pass_vectorize);
 PUSH_INSERT_PASSES_WITHIN (pass_vectorize)
 NEXT_PASS (pass_dce);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_predcom);
 NEXT_PASS (pass_complete_unroll);
 NEXT_PASS (pass_pre_slp_scalar_cleanup);
 PUSH_INSERT_PASSES_WITHIN (pass_pre_slp_scalar_cleanup)
 NEXT_PASS (pass_fre, false /* may_iterate */);
 NEXT_PASS (pass_dse);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_slp_vectorize);
 NEXT_PASS (pass_loop_prefetch);
 /* Run IVOPTs after the last pass that uses data-reference analysis
 as that doesn't handle TARGET_MEM_REFs. */
 NEXT_PASS (pass_iv_optimize);
 NEXT_PASS (pass_lim);
 NEXT_PASS (pass_tree_loop_done);

 POP_INSERT_PASSES ()
 /* Pass group that runs when pass_tree_loop is disabled or there
 are no loops in the function. */
 NEXT_PASS (pass_tree_no_loop);
 PUSH_INSERT_PASSES_WITHIN (pass_tree_no_loop)

 NEXT_PASS (pass_slp_vectorize);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_simduid_cleanup);
 NEXT_PASS (pass_lower_vector_ssa);
 NEXT_PASS (pass_lower_switch);
 NEXT_PASS (pass_cse_sincos);
 NEXT_PASS (pass_cse_reciprocals);
 NEXT_PASS (pass_reassoc, false /* early_p */);
 NEXT_PASS (pass_strength_reduction);
 NEXT_PASS (pass_split_paths);
 NEXT_PASS (pass_tracer);
 NEXT_PASS (pass_fre, false /* may_iterate */);
 /* After late FRE we rewrite no longer addressed locals into SSA
 form if possible. */
 NEXT_PASS (pass_thread_jumps, /*first=*/false);
 NEXT_PASS (pass_dominator, false /* may_peel_loop_headers_p */);
 NEXT_PASS (pass_strlen);
 NEXT_PASS (pass_thread_jumps_full, /*first=*/false);
 NEXT_PASS (pass_vrp, false /* warn_array_bounds_p */);
 /* Run CCP to compute alignment and nonzero bits. */
 NEXT_PASS (pass_ccp, true /* nonzero_p */);
 NEXT_PASS (pass_warn_restrict);
 NEXT_PASS (pass_dse);
 NEXT_PASS (pass_dce, true /* update_address_taken_p */);
 /* After late DCE we rewrite no longer addressed locals into SSA

 form if possible. */
 NEXT_PASS (pass_forwprop);
 NEXT_PASS (pass_sink_code, true /* unsplit edges */);
 NEXT_PASS (pass_phiopt, false /* early_p */);
 NEXT_PASS (pass_fold_builtins);
 NEXT_PASS (pass_optimize_widening_mul);
 NEXT_PASS (pass_store_merging);
 /* If DCE is not run before checking for uninitialized uses,

 we may get false warnings (e.g., testsuite/gcc.dg/uninit-5.c).
 However, this also causes us to misdiagnose cases that should be
 real warnings (e.g., testsuite/gcc.dg/pr18501.c). */

 NEXT_PASS (pass_cd_dce, false /* update_address_taken_p */);
 NEXT_PASS (pass_tail_calls);
 /* Split critical edges before late uninit warning to reduce the
 number of false positives from it. */
 NEXT_PASS (pass_split_crit_edges);
 NEXT_PASS (pass_late_warn_uninitialized);
 NEXT_PASS (pass_local_pure_const);
 NEXT_PASS (pass_modref);
 /* uncprop replaces constants by SSA names. This makes analysis harder

 and thus it should be run last. */
 NEXT_PASS (pass_uncprop);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_all_optimizations_g);
 PUSH_INSERT_PASSES_WITHIN (pass_all_optimizations_g)
 /* The idea is that with -Og we do not perform any IPA optimization

 so post-IPA work should be restricted to semantically required
 passes and all optimization work is done early. */

 NEXT_PASS (pass_remove_cgraph_callee_edges);
 NEXT_PASS (pass_strip_predict_hints, false /* early_p */);
 /* Lower remaining pieces of GIMPLE. */
 NEXT_PASS (pass_lower_complex);
 NEXT_PASS (pass_lower_vector_ssa);
 NEXT_PASS (pass_lower_switch);
 /* Perform simple scalar cleanup which is constant/copy propagation. */
 NEXT_PASS (pass_ccp, true /* nonzero_p */);
 NEXT_PASS (pass_post_ipa_warn);
 NEXT_PASS (pass_object_sizes);
 /* Fold remaining builtins. */
 NEXT_PASS (pass_fold_builtins);
 NEXT_PASS (pass_strlen);
 /* Copy propagation also copy-propagates constants, this is necessary
 to forward object-size and builtin folding results properly. */
 NEXT_PASS (pass_copy_prop);
 NEXT_PASS (pass_dce);
 NEXT_PASS (pass_sancov);
 NEXT_PASS (pass_asan);
 NEXT_PASS (pass_tsan);
 /* ??? We do want some kind of loop invariant motion, but we possibly
 need to adjust LIM to be more friendly towards preserving accurate

 debug information here. */
 /* Split critical edges before late uninit warning to reduce the
 number of false positives from it. */
 NEXT_PASS (pass_split_crit_edges);
 NEXT_PASS (pass_late_warn_uninitialized);
 /* uncprop replaces constants by SSA names. This makes analysis harder

 and thus it should be run last. */
 NEXT_PASS (pass_uncprop);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_assumptions);
 NEXT_PASS (pass_tm_init);
 PUSH_INSERT_PASSES_WITHIN (pass_tm_init)
 NEXT_PASS (pass_tm_mark);
 NEXT_PASS (pass_tm_memopt);
 NEXT_PASS (pass_tm_edges);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_simduid_cleanup);
 NEXT_PASS (pass_vtable_verify);
 NEXT_PASS (pass_lower_vaarg);
 NEXT_PASS (pass_lower_vector);
 NEXT_PASS (pass_lower_complex_O0);
 NEXT_PASS (pass_sancov_O0);
 NEXT_PASS (pass_lower_switch_O0);
 NEXT_PASS (pass_asan_O0);
 NEXT_PASS (pass_tsan_O0);
 NEXT_PASS (pass_sanopt);
 NEXT_PASS (pass_cleanup_eh);
 NEXT_PASS (pass_lower_resx);
 NEXT_PASS (pass_nrv);
 NEXT_PASS (pass_gimple_isel);
 NEXT_PASS (pass_harden_conditional_branches);
 NEXT_PASS (pass_harden_compares);
 NEXT_PASS (pass_warn_access, /*early=*/false);
 NEXT_PASS (pass_cleanup_cfg_post_optimizing);
 NEXT_PASS (pass_warn_function_noreturn);

 NEXT_PASS (pass_expand);

 NEXT_PASS (pass_rest_of_compilation);
 PUSH_INSERT_PASSES_WITHIN (pass_rest_of_compilation)
 NEXT_PASS (pass_instantiate_virtual_regs);
 NEXT_PASS (pass_into_cfg_layout_mode);
 NEXT_PASS (pass_jump);
 NEXT_PASS (pass_lower_subreg);
 NEXT_PASS (pass_df_initialize_opt);
 NEXT_PASS (pass_cse);
 NEXT_PASS (pass_rtl_fwprop);
 NEXT_PASS (pass_rtl_cprop);
 NEXT_PASS (pass_rtl_pre);
 NEXT_PASS (pass_rtl_hoist);
 NEXT_PASS (pass_rtl_cprop);
 NEXT_PASS (pass_rtl_store_motion);
 NEXT_PASS (pass_cse_after_global_opts);
 NEXT_PASS (pass_rtl_ifcvt);
 NEXT_PASS (pass_reginfo_init);
 /* Perform loop optimizations. It might be better to do them a bit

 sooner, but we want the profile feedback to work more
 efficiently. */

 NEXT_PASS (pass_loop2);
 PUSH_INSERT_PASSES_WITHIN (pass_loop2)

 NEXT_PASS (pass_rtl_loop_init);
 NEXT_PASS (pass_rtl_move_loop_invariants);
 NEXT_PASS (pass_rtl_unroll_loops);
 NEXT_PASS (pass_rtl_doloop);
 NEXT_PASS (pass_rtl_loop_done);

 POP_INSERT_PASSES ()
 NEXT_PASS (pass_lower_subreg2);
 NEXT_PASS (pass_web);
 NEXT_PASS (pass_rtl_cprop);
 NEXT_PASS (pass_cse2);
 NEXT_PASS (pass_rtl_dse1);
 NEXT_PASS (pass_rtl_fwprop_addr);
 NEXT_PASS (pass_inc_dec);
 NEXT_PASS (pass_initialize_regs);
 NEXT_PASS (pass_ud_rtl_dce);
 NEXT_PASS (pass_combine);
 NEXT_PASS (pass_if_after_combine);
 NEXT_PASS (pass_jump_after_combine);
 NEXT_PASS (pass_partition_blocks);
 NEXT_PASS (pass_outof_cfg_layout_mode);
 NEXT_PASS (pass_split_all_insns);
 NEXT_PASS (pass_lower_subreg3);
 NEXT_PASS (pass_df_initialize_no_opt);
 NEXT_PASS (pass_stack_ptr_mod);
 NEXT_PASS (pass_mode_switching);
 NEXT_PASS (pass_match_asm_constraints);
 NEXT_PASS (pass_sms);
 NEXT_PASS (pass_live_range_shrinkage);
 NEXT_PASS (pass_sched);
 NEXT_PASS (pass_early_remat);
 NEXT_PASS (pass_ira);
 NEXT_PASS (pass_reload);
 NEXT_PASS (pass_postreload);
 PUSH_INSERT_PASSES_WITHIN (pass_postreload)

 NEXT_PASS (pass_postreload_cse);
 NEXT_PASS (pass_gcse2);
 NEXT_PASS (pass_split_after_reload);
 NEXT_PASS (pass_ree);
 NEXT_PASS (pass_compare_elim_after_reload);
 NEXT_PASS (pass_thread_prologue_and_epilogue);
 NEXT_PASS (pass_rtl_dse2);
 NEXT_PASS (pass_stack_adjustments);
 NEXT_PASS (pass_jump2);
 NEXT_PASS (pass_duplicate_computed_gotos);
 NEXT_PASS (pass_sched_fusion);
 NEXT_PASS (pass_peephole2);
 NEXT_PASS (pass_if_after_reload);
 NEXT_PASS (pass_regrename);
 NEXT_PASS (pass_cprop_hardreg);
 NEXT_PASS (pass_fast_rtl_dce);
 NEXT_PASS (pass_reorder_blocks);
 NEXT_PASS (pass_leaf_regs);
 NEXT_PASS (pass_split_before_sched2);
 NEXT_PASS (pass_sched2);
 NEXT_PASS (pass_stack_regs);
 PUSH_INSERT_PASSES_WITHIN (pass_stack_regs)
 NEXT_PASS (pass_split_before_regstack);
 NEXT_PASS (pass_stack_regs_run);
 POP_INSERT_PASSES ()

 POP_INSERT_PASSES ()
 NEXT_PASS (pass_late_compilation);
 PUSH_INSERT_PASSES_WITHIN (pass_late_compilation)

 NEXT_PASS (pass_zero_call_used_regs);
 NEXT_PASS (pass_compute_alignments);
 NEXT_PASS (pass_variable_tracking);
 NEXT_PASS (pass_free_cfg);
 NEXT_PASS (pass_machine_reorg);
 NEXT_PASS (pass_cleanup_barriers);
 NEXT_PASS (pass_delay_slots);
 NEXT_PASS (pass_split_for_shorten_branches);
 NEXT_PASS (pass_convert_to_eh_region_ranges);
 NEXT_PASS (pass_shorten_branches);
 NEXT_PASS (pass_set_nothrow_function_flags);
 NEXT_PASS (pass_dwarf2_frame);
 NEXT_PASS (pass_final);

 POP_INSERT_PASSES ()
 NEXT_PASS (pass_df_finish);
 POP_INSERT_PASSES ()
 NEXT_PASS (pass_clean_state);
 TERMINATE_PASS_LIST (all_passes)

GCC: } 540 lines (passes.def)

The Pass-Order Problem
(or: “Fix-point All The Things?”)

• Goal: find a way to put all (ish) of our optimizations in a single fixpoint loop

GVN

RLE

… cprop, algebraic rewrites,

strength reduction, …

The Pass-Order Problem
(or: “Fix-point All The Things?”)

• Goal: find a way to put all (ish) of our optimizations in a single fixpoint loop

• Remember: compile-cost focus! (We can’t afford to run a pass N times)

• We’d prefer not to maintain a brittle heuristic pass order

GVN

RLE

… cprop, algebraic rewrites,

strength reduction, …

Adding some “simple” rewrites

Adding some “simple” rewrites (!)

Adding some “simple” rewrites (!!!)

Adding some simple rewrites

(Cranelift’s ISLE term-rewriting DSL)

Adding some simple rewrites

👍

Rewrite Systems for Optimization

• Many kinds of optimizations can be expressed as value rewrites

• Constant prop (1 + 2 => 3), algebraic (x + 0 => x), strength reduction, …

Rewrite Systems for Optimization

• Many kinds of optimizations can be expressed as value rewrites

• Constant prop (1 + 2 => 3), algebraic (x + 0 => x), strength reduction, …

• Those that can’t are often “rewrite-adjacent”

• Normalization of input terms to rewriter => GVN

• Placement of rewritten terms => LICM, code motion in general

Rewrite Systems for Optimization

• Many kinds of optimizations can be expressed as value rewrites

• Constant prop (1 + 2 => 3), algebraic (x + 0 => x), strength reduction, …

• Those that can’t are often “rewrite-adjacent”

• Normalization of input terms to rewriter => GVN

• Placement of rewritten terms => LICM, code motion in general

• Rewriting is a well-defined framework that works well for verification!

• “This value is equal to that value”

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

Optimization pipeline
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

Optimization pipeline

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

Optimization pipeline

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

Optimization pipeline

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

Optimization pipeline

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

E-graph + CFG == ???
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

E-graph + CFG == ???
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

E-graph + CFG == ???
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

egraph per basic block:

+ simple

- limited rewrite scope

- limited sharing/amortization

- rules out control optimizations

E-graph + CFG == ???
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

1 -

E-graph + CFG == ???
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

If

1 -

E-graph + CFG == ???
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

If

Loop
Loop

E-graph + CFG == ???

If

Loop
Loop

Region-nodes in egraph:

+ powerful optimizations!

+ strongly normalizing

+ more compact IR

+ cheaper analysis?

- very different from CFG 
 (conversion overheads)

- side-effects are tricky

- issues with irreducible 

control flow

E-graph + CFG == ???

If

Loop
Loop

Region-nodes in egraph:

+ powerful optimizations!

+ strongly normalizing

+ more compact IR

+ cheaper analysis?

- very different from CFG 
 (conversion overheads)

- side-effects are tricky

- issues with irreducible 

control flow

Jamey Sharp’s prototype: https://github.com/jameysharp/optir

E-graph + CFG == ???
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

E-graph + CFG == ???
block0(v0, v1):

 if v3,
 block1(v2),
 block2(v3)

block1(v4):

 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

1 -

E-graph + CFG == ???
block0(v0, v1):

 if v3,
 block1(v2),
 block2(v3)

block1(v4):

 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

1 -

E-graph + CFG == ???
block0(v0, v1):

 if v3,
 block1(v2),
 block2(v3)

block1(v4):

 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

CFG skeleton contains:

- all blocks, with blockparams

- side-effecting operators

- block terminators (branches)

E-graph + CFG == ???

v0 v1

+ -

1 -

egraph contains:

- blockparam values, as terminals

- all pure operators, 

without associated location

v4 v7 v8

E-graph + CFG == ???
block0(v0, v1):

 if v3,
 block1(v2),
 block2(v3)

block1(v4):

 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

1 -

v4 v7 v8

E-graph + CFG == ???

egraph with CFG skeleton:

+ cheap to convert to/from CFG
+ algorithmically and in implementation

+ optimizations across function scope (mostly)

- harder to express rewrites that alter side-effects
- need special support for “seeing through” blockparams

E-graph + CFG == ???

good enough for now! (incremental approach)

egraph with CFG skeleton:

+ cheap to convert to/from CFG
+ algorithmically and in implementation

+ optimizations across function scope (mostly)

- harder to express rewrites that alter side-effects
- need special support for “seeing through” blockparams

Optimization pipeline

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

Optimization pipeline

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

Lowering to a CFG
block0(v0, v1):

 if v3,
 block1(v2),
 block2(v3)

block1(v4):

 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

v0 v1

+ -

1 -

Lowering to a CFG
block0(v0, v1):

 if v3,
 block1(v2),
 block2(v3) v0 v1

+ -

Lowering to a CFG
block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3) v0 v1

+ -

Elaboration
block0(v0, v1):
 store ec0, ec4
 return ec2

v0 v1

+

-

42ec2 ec3

ec4

ec0 ec1

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 ec1block0(v0, v1):
 store ec0, ec4
 return ec2

ec0 v0
ec1 v1

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v2 = isub ec2, ec3
 store ec0, ec4
 return ec2

ec4 v2
* Note: assume extraction (node selection) is done already!

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd ec0, ec1
 v2 = isub ec2, ec3
 store ec0, ec4
 return ec2

ec4 v2

ec2 v3

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd v0, v1
 v2 = isub ec2, ec3
 store ec0, ec4
 return ec2

ec4 v2

ec2 v3

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd v0, v1
 v2 = isub ec2, ec3
 store ec0, ec4
 return ec2

ec4 v2

ec2 v3

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd v0, v1
 v4 = iconst 42
 v2 = isub ec2, ec3
 store ec0, ec4
 return ec2

ec4 v2

ec2 v3
ec3 v4

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd v0, v1
 v4 = iconst 42
 v2 = isub v3, v4
 store ec0, ec4
 return ec2

ec4 v2

ec2 v3
ec3 v4

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd v0, v1
 v4 = iconst 42
 v2 = isub v3, v4
 store v0, v2
 return ec2

ec4 v2

ec2 v3
ec3 v4

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd v0, v1
 v4 = iconst 42
 v2 = isub v3, v4
 store v0, v2
 return ec2

ec4 v2

ec2 v3
ec3 v4

Elaboration
v0 v1

+

-

42ec2 ec3

ec4
eclass elaborated

ec0 v0
ec1 v1

ec0 ec1block0(v0, v1):
 v3 = iadd v0, v1
 v4 = iconst 42
 v2 = isub v3, v4
 store v0, v2
 return v3

ec4 v2

ec2 v3
ec3 v4

Elaboration… twice?
block0(v0, v1):
 …

block1:
 return ec2

block2:
 return ec4

v0 v1

+

-

42ec2 ec3

ec4

ec0 ec1

Elaboration… twice?
block0(v0, v1):
 v2 = iadd v0, v1

block1:
 return v2

block2:
 v3 = iconst 42
 v4 = isub v2, v3
 return v4

v0 v1

+

-

42ec2 ec3

ec4

ec0 ec1?

Elaboration… twice?
block0(v0, v1):
 v2 = iadd v0, v1

v0 v1

+

-

42ec2 ec3

ec4

ec0 ec1partial redundancy!

block1:
 return v2

block2:
 v3 = iconst 42
 v4 = isub v2, v3
 return v4

block2:
 … no use of v2 …
 return v50

SSA
block0

block1
block2

block3

CFG

SSA
block0

block1
block2

block3

CFG Dominator Tree

block0

block1 block2 block3

SSA
block0

block1
block2

block3

CFG Dominator Tree

block0

block1 block2 block3

A dominates B if 
all paths to B first pass through A.

SSA
block0

block1
block2

block3

CFG Dominator Tree

block0

block1 block2 block3

A dominates B if 
all paths to B first pass through A.

Dominance forms a tree.

Many compiler algorithms work 

by traversing the domtree.

SSA
block0:

block1
block2

block3

CFG Dominator Tree

block0

block1 block2 block3

SSA
block0:

block1
block2

block3

CFG Dominator Tree

block0

block1 block2 block3

SSA: A value’s definition

dominates its uses.

SSA
block0:
 v1 = …

block1
 v2 = … v1 … block2

 v3 = … v1 …

block3
 v4 = … v1 …

CFG Dominator Tree

block0

block1 block2 block3

SSA: A value’s definition

dominates its uses.

SSA

block1
 v2 = … v1 …

block3
 v4 = … v2 …

CFG Dominator Tree

block0

block1 block2 block3

SSA: A value’s definition

dominates its uses.

block0:
 v1 = …

block2
 v3 = … v1 …

SSA

block1
 v2 = … v1 …

block3
 v4 = … v2 …

CFG Dominator Tree

block0

block1 block2 block3

SSA: A value’s definition

dominates its uses.

block0:
 v1 = …

block2
 v3 = … v1 …

GVN
block0(v0, v1):
 v2 = iadd v0, v1

block1
 v3 = iadd v0, v1 block2

block3

GVN
block0(v0, v1):
 v2 = iadd v0, v1

block1
 v3 = iadd v0, v1 block2

block3

GVN (Global Value Numbering): 
If an operator dominates a 

duplicate copy of itself, 
reuse the original.

GVN
block0(v0, v1):
 v2 = iadd v0, v1

block1
 v3 <- v2 block2

block3

GVN (Global Value Numbering): 
If an operator dominates a 

duplicate copy of itself, 
reuse the original.

GVN
block0(v0, v1):
 v2 = iadd v0, v1

block1
 v3 <- v2 block2

block3

GVN (Global Value Numbering): 
If an operator dominates a 

duplicate copy of itself, 
reuse the original.

Implement with 
domtree preorder traversal 

and a scoped map.

GVN
block0(v0, v1):
 v2 = iadd v0, v1

block1
 v3 <- v2 block2

block3

Implement with 
domtree preorder traversal 

and a scoped map.

Scoped Elaboration
block0(v0, v1):
 …

block1:
 … = op ec2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op ec2

Scoped Elaboration
block0(v0, v1):
 …

block1:
 … = op ec2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op ec2

block0

block1 block2

block3

Scoped Elaboration
block0(v0, v1):
 …

block1:
 … = op ec2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op ec2

block0

block1 block2

block3

Scoped Elaboration
block0(v0, v1):
 …

block1:
 … = op ec2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op ec2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1

Scoped Elaboration
block0(v0, v1):
 …

block1:
 … = op ec2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op ec2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op ec2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v2

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op ec2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v2

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v2

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v2reuse!

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v2

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v2

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 … = op ec2
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 v3 = …
 … = op v3
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v3

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 v3 = …
 … = op v3
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v3duplicate!

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 v3 = …
 … = op v3
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v3

Scoped elaboration subsumes GVN

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 v3 = …
 … = op v3
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v3

Scoped elaboration subsumes GVN

+ LICM (choose to insert higher in loopnest + scoped map)

Scoped Elaboration
block0(v0, v1):
 …

block1:
 v2 = …
 … = op v2

block2:
 v3 = …
 … = op v3
 return ec4

…

block3:
 … = op v2

block0

block1 block2

block3

eclass elaborated

ec0 v0
ec1 v1
ec2 v3

Scoped elaboration subsumes GVN

+ LICM (choose to insert higher in loopnest + scoped map)

+ Rematerialization (choose to create duplicate anyway)

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

Rewrites and Repair

Rewrite: x + 0 => x
v0 0

+ ec3

ec0 ec1

+ec5+ec4

1 ec2

Rewrites and Repair

Rewrite: x + 0 => x
0 ec1

+ec5+ec4

1 ec2

v0 +

ec0, ec3

Rewrites and Repair

Rewrite: x + 0 => x

0 ec1

+ ec4, ec5

1 ec2

v0 +

ec0, ec3

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

0 ec1

+ ec4, ec5

1 ec2

v0 +

ec0, ec3

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

v0 0

+ ec3

ec0 ec1

+ec5+ec4

1 ec2

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

v0ec0 +ec3

Parents: 
{ec3 := (+ ec0, ec1),

ec4 := (+ ec0, ec2)}

v0 0

+ ec3

ec0 ec1

+ec5+ec4

1 ec2

Parents:

{ec5 := (+ ec3 ec2)}

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

0 ec1 1 ec2

v0

ec0, ec3

v0ec0,

ec3 +

Parents: 
{ec3 := (+ ec0, ec1),

ec4 := (+ ec0, ec2),

ec5 := (+ ec3 ec2)}

ec5ec4

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

0

+

ec1 1 ec2

v0 +

ec0, ec3

v0ec0,

ec3 +

Re-intern
ec3 := (+ ec0 ec1)

ec5ec4

Parents: 
{ec3 := (+ ec0, ec1),

ec4 := (+ ec0, ec2),

ec5 := (+ ec3 ec2)}

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

0

+

ec1

ec5+ec4

1 ec2

v0 +

ec0, ec3

v0ec0,

ec3 +

Re-intern
ec4 := (+ ec0 ec2)Parents: 

{ec3 := (+ ec0, ec1),

ec4 := (+ ec0, ec2),

ec5 := (+ ec3 ec2)}

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

0

+

ec1

+ec4,

ec5

1 ec2

v0 +

ec0, ec3

v0ec0,

ec3 +

Parents: 
{ec3 := (+ ec0, ec1),

ec4 := (+ ec0, ec2),

ec5 := (+ ec3 ec2)}

Re-intern
ec5 := (+ ec3 ec2)
 = (+ ec0 ec2)
 = ec4

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

Eliminate:

- Parent lists?

- Duplicated storage of nodes?

- Merging of parent lists, with dedup’ing?

0

+

ec1

+ec4,

ec5

1 ec2

v0 +

ec0, ec3

Rewrites and Repair

Rewrite: x + 0 => x

Fixup requires backlinks (parent pointers) 
and re-interning, which are costly

Eliminate:

- Parent lists?

- Duplicated storage of nodes?

- Merging of parent lists, with dedup’ing?

—> compile + memory overhead too high

 vs. traditional compiler pipeline

0

+

ec1

+ec4,

ec5

1 ec2

v0 +

ec0, ec3

Rewrites and Repair
Idea: no need to repair uses if eclass is in final form before we use it!

Rewrites and Repair
Idea: no need to repair uses if eclass is in final form before we use it!

Rewrite eagerly?!

v0 0

+ ec3

ec0 ec1

Rewrite eagerly?!

0 ec1

v0 +

ec0, ec2

Rewrite eagerly?!

0 ec1

v0 +

ec0, ec2

+ ec4

1 ec2

Rewrite eagerly?!

0 ec1

v0 +

ec0, ec2

+ ec4, ec5

1 ec2

Rewrite already occurred 
 ec5 hash-conses to ec4

Rewrite eagerly?!

0 ec1

v0 +

ec0, ec2

+ ec4, ec5

1 ec2

How do we handle this cycle?

Rewrite eagerly?!

0 ec1

v0 +

ec0, ec2

+ ec4, ec5

1 ec2

How do we handle this cycle?

- Cycles preclude single pass 

(imply fixpoint algorithm)

Rewrite eagerly?!

0 ec1

v0 +

ec0, ec2

+ ec4, ec5

1 ec2

How do we handle this cycle?

- Cycles preclude single pass 

(imply fixpoint algorithm)

- We’re rewriting the arg after 

its use (no longer eager) 
—> need parent lists again

Cycles in E-graphs

v0 0

+ec2

ec0 ec1

Cycles in E-graphs

v0 0

+ec2

ec0 ec1 x + 0 => x

Cycles in E-graphs

v0

0

+

ec0, ec2

ec1 x + 0 => x

Cycles in E-graphs

v0

0

+

ec0, ec2

ec1 x + 0 => x
Observation:

- egraph does not record rewrite “direction”

Cycles in E-graphs

v0

0

+

ec0, ec2

ec1 x + 0 => x
Observation:

- egraph does not record rewrite “direction”

- this egraph equivalent to

- start with x

- rewrite with x => x + 0

Cycles in E-graphs

v0

0

+

ec0, ec2

ec1 x + 0 => x
Observation:

- egraph does not record rewrite “direction”

- this egraph equivalent to

- start with x

- rewrite with x => x + 0

- rewrite rules that equate part to whole are 
(reverse)-generative

Cycles in E-graphs

v0

0

+

ec0, ec2

ec1 x + 0 => x
Observation:

- egraph does not record rewrite “direction”

- this egraph equivalent to

- start with x

- rewrite with x => x + 0

- rewrite rules that equate part to whole are 
(reverse)-generative

Cycles occur even if original egraph is acyclic (e.g., from SSA)

Persistent immutable e-classes

v0 0

+ ec3

ec0 ec1

Persistent immutable e-classes

v0 0

+ ec3

ec0 ec1

U

- Never rewrite a node

- Represent eclasses as 

trees of union nodes

ec4

Persistent immutable e-classes

v0 0

+ ec3

ec0 ec1

U

- Never rewrite a node

- Represent eclasses as 

trees of union nodes

ec4

+ ec6

1 ec5

Persistent immutable e-classes

v0 0

+ ec3

ec0 ec1

U

- Never rewrite a node

- Represent eclasses as 

trees of union nodes

- As we build the egraph, track 

latest id for a given value

- Invoke rewrite rules when a node 

is created
- enter into hashcons map 

with final union’d IDec4

+ ec6

1 ec5

Persistent immutable e-classes

Eager rewriting Acyclicity

Persistent 
immutable

data structure

Persistent immutable e-classes

Eager rewriting Acyclicity

Persistent 
immutable

data structure
Enables

(otherwise, uses
don’t pick up

optimized defs)

Persistent immutable e-classes

Eager rewriting Acyclicity

Persistent 
immutable

data structure
Enables

(otherwise, uses
don’t pick up

optimized defs)

Maintains

(creating a cycle

requires mutable args)

Persistent immutable e-classes

Eager rewriting Acyclicity

Persistent 
immutable

data structure
Enables

(otherwise, uses
don’t pick up

optimized defs)

Maintains

(creating a cycle

requires mutable args)

Allows

(otherwise, need to
revisit + do fixpoint)

E-graph vs. ægraph

- Can miss rewrites 
 (depending on rule structure)

- Cannot support cyclic input 
 (e.g., seeing through phi-nodes)

+ Single-pass rewrite

+ No parent pointers 

 (minimal memory + maintenance 
 overhead)

+ Strongly normalizing

+ Supports arbitrarily cyclic 

input

- Requires parent pointers 
and rehashing on fixup

- Repair step is a fixpoint

egg-style egraph:

batched rewriting + repair

ægraph:

eager rewriting + immutable union nodes

E-graph vs. ægraph

egg-style egraph:

batched rewriting + repair

ægraph:

eager rewriting + immutable union nodes

- Can miss rewrites 
 (depending on rule structure)

- Cannot support cyclic input 
 (e.g., seeing through phi-nodes)

+ Single-pass rewrite

+ No parent pointers 

 (minimal memory + maintenance 
 overhead)

+ Strongly normalizing

+ Supports arbitrarily cyclic 

input

- Requires parent pointers 
and rehashing on fixup

- Repair step is a fixpoint

We can avoid batched repair because there is no repair

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• No catchall associativity or commutativity rewrites!

(iadd a b) => (iadd b a)

(iadd a (iadd b c))
=> (iadd (iadd a b) c)

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• No catchall associativity or commutativity rewrites!

(iadd a b) => (iadd b a)

(iadd a (iadd b c))
=> (iadd (iadd a b) c)

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• Only limited “non-directional” rewrites

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• Only limited “non-directional” rewrites

(bnot (band a b)) => (bor (bnot a) (bnot b))

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• Only limited “non-directional” rewrites

(bnot (band a b)) => (bor (bnot a) (bnot b))

OK (part of a “strategy”: push bnots downward)

But let’s not also have the other direction!

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• No catchall associativity or commutativity rewrites!

• Only limited “non-directional” rewrites

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• No catchall associativity or commutativity rewrites!

• Only limited “non-directional” rewrites

• Acyclicity precludes rules that operate over blockparams (phis)

How We Write Rules

• Two fundamental compromises: acyclicity and more targeted rewrites

• No catchall associativity or commutativity rewrites!

• Only limited “non-directional” rewrites

• Acyclicity precludes rules that operate over blockparams (phis)

These limitations are OK!

At least as powerful as traditional rewrites;

and we’ve solved phase ordering;

and we can make use of “multi-version” + cost-based extraction.

What E-graphs Gave Us

• If not full EqSat + repair phase, what do ægraphs take from e-graphs?

• Rewriting: a powerful unifying paradigm for optimizations

• Multiple value representations: explores all rewrite paths; cost function
makes final resolution in principled way

• Sea-of-nodes IR for pure values: natural framework for code motion

The ægraph Passes

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

The ægraph Passes

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

1. Build ægraph and eagerly rewrite

The ægraph Passes

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

2. Perform extraction

The ægraph Passes

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

2. Perform extraction

-Greedy heuristic

-Dynamic programming 
(single pass)

The ægraph Passes

v0 v1

+ -

1 -

v4 v7 v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

block0(v0, v1):
 v2 = iadd v0, v1
 v3 = isub v0, v2
 if v3,
 block1(v2),
 block2(v3)

block1(v4):
 v5 = iconst 1
 v6 = isub v4, v5
 br block3(v6)

block2(v7):
 br block3(v7)

block3(v8):
 return v8

x + 0 => x

…

3. Scoped elaboration

The ægraph Passes

1. Build and rewrite

2. Extraction

3. Scoped elaboration

Three linear passes, no fix-point loops

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

Performance

Performance

SpiderMonkey.wasm
11% faster runtime
2% longer compile-time

Performance

SpiderMonkey.wasm
11% faster runtime
2% longer compile-time

bz2
3% higher runtime
2% faster compile-time

Performance

gimli

spidermonkey

minicsv

ratelimit

switch

fib2

intgemm

22%

11%

9%

8%

3%

3%

1%

Speedups

Performance

gimli

spidermonkey

minicsv

ratelimit

switch

fib2

intgemm

random

hex-simd

meshoptimizer

ed25519

blake3-simd

keccak

bz2

22%

11%

9%

8%

3%

3%

1%

Speedups

-31%

-16%

-14%

-13%

-6%

-4%

-3%

Slowdowns

Performance

gimli

spidermonkey

minicsv

ratelimit

switch

fib2

intgemm

random

hex-simd

meshoptimizer

ed25519

blake3-simd

keccak

bz2

22%

11%

9%

8%

3%

3%

1%

Speedups

-31%

-16%

-14%

-13%

-6%

-4%

-3%

Slowdowns

• Instruction scheduling: #6260

• Missing opt rules 

- Magic div constants: #6049

https://github.com/bytecodealliance/wasmtime/issues/6260
https://github.com/bytecodealliance/wasmtime/issues/6049

Performance

Project Health & Enablement
PR

s
to

 a
dd

 m
id

-e
nd

 o
pt

s

Time

Project Health & Enablement
PR

s
to

 a
dd

 m
id

-e
nd

 o
pt

s

Time

egraph-based mid-end

Project Health & Enablement
PR

s
to

 a
dd

 m
id

-e
nd

 o
pt

s

Time

egraph-based mid-end

Project Health & Enablement
PR

s
to

 a
dd

 m
id

-e
nd

 o
pt

s

Time

egraph-based mid-end

Optimize sign extension via shifts (#6220)
egraphs: Add `bmask` bit pattern optimization rule (#6196)
Add `multi_lane` precondition to `bitselect` => `{u,s}{min,max}` rewrite (#6201)
ISLE: simplify select/bitselect when both choices are the same (#6141)
Add egraph cprop optimizations for `splat` (#6148)
ISLE: rewrite loose inequalities to strict inequalities and strict inequalities to equalities (#6130)
ISLE: rewrite `and`/`or` of `icmp` (#6095)
ISLE: add synonyms for all variations of `icmp` (#6081)
cranelift: rewrite `iabs(ineg(x))` and `iabs(iabs(x))` (#6072)
cranelift: rewrite `x*-1` to `ineg(x)` (#6052)
craneleft: cancel `ineg` when args to `imul` (#6053)
cranelift: simplify `icmp` against UMAX/SMIN/SMAX (#6037)
cranelift: simplify `x-x` to `0` (#6032)
cranelift: simplify `fneg(fneg(x))` to `x` (#6034)
cranelift: simplify `ineg(ineg(x))` to `x` (#6033)
Add egraph optimization for fneg's cancelling out (#5910)
Cranelift: Generalize `(x << k) >> k` optimization (#5746)
cranelift: Optimize `select+icmp` into `{s,u}{min,max}` (#5546)
Cranelift: Collapse double extends into a single extend (#5772)
Generalize and/or/xor optimizations (#5744)
Algebraic opts: Reuse `iconst 0` from LHS (#5724)
Add some minor souper-harvested optimizations (#5735)
Cranelift: Only build iconst for ints <= 64 bits (#5723)
Legalize `b{and,or,xor}_not` into component instructions (#5709)
egraphs/cprop: Don't extend constants to `i128` (#5717)
Generalize u/sextend constant folding to all types (#5706)
Cranelift: Correctly wrap shifts in constant propagation (#5695)
Constant-fold icmp instructions (#5666)
Cranelift: Rewrite `or(and(x, y), not(y)) => or(x, not(y))` (#5676)
Cranelift: Rewrite `(x>>k)<<k` into masking off the bottom `k` bits (#5673)
Cranelift: constant propagate shifts (#5671)
Cranelift: Add egraph rule to rewrite `x * C ==> x << log2(C)` when `C` is a power of two (#5647)
egraph opt rules: do `(icmp cc x x) == {0,1}` only for integer types. (#5438)

Project Health & Enablement
PR

s
to

 a
dd

 m
id

-e
nd

 o
pt

s

Time

egraph-based mid-end

Optimize sign extension via shifts (#6220)
egraphs: Add `bmask` bit pattern optimization rule (#6196)
Add `multi_lane` precondition to `bitselect` => `{u,s}{min,max}` rewrite (#6201)
ISLE: simplify select/bitselect when both choices are the same (#6141)
Add egraph cprop optimizations for `splat` (#6148)
ISLE: rewrite loose inequalities to strict inequalities and strict inequalities to equalities (#6130)
ISLE: rewrite `and`/`or` of `icmp` (#6095)
ISLE: add synonyms for all variations of `icmp` (#6081)
cranelift: rewrite `iabs(ineg(x))` and `iabs(iabs(x))` (#6072)
cranelift: rewrite `x*-1` to `ineg(x)` (#6052)
craneleft: cancel `ineg` when args to `imul` (#6053)
cranelift: simplify `icmp` against UMAX/SMIN/SMAX (#6037)
cranelift: simplify `x-x` to `0` (#6032)
cranelift: simplify `fneg(fneg(x))` to `x` (#6034)
cranelift: simplify `ineg(ineg(x))` to `x` (#6033)
Add egraph optimization for fneg's cancelling out (#5910)
Cranelift: Generalize `(x << k) >> k` optimization (#5746)
cranelift: Optimize `select+icmp` into `{s,u}{min,max}` (#5546)
Cranelift: Collapse double extends into a single extend (#5772)
Generalize and/or/xor optimizations (#5744)
Algebraic opts: Reuse `iconst 0` from LHS (#5724)
Add some minor souper-harvested optimizations (#5735)
Cranelift: Only build iconst for ints <= 64 bits (#5723)
Legalize `b{and,or,xor}_not` into component instructions (#5709)
egraphs/cprop: Don't extend constants to `i128` (#5717)
Generalize u/sextend constant folding to all types (#5706)
Cranelift: Correctly wrap shifts in constant propagation (#5695)
Constant-fold icmp instructions (#5666)
Cranelift: Rewrite `or(and(x, y), not(y)) => or(x, not(y))` (#5676)
Cranelift: Rewrite `(x>>k)<<k` into masking off the bottom `k` bits (#5673)
Cranelift: constant propagate shifts (#5671)
Cranelift: Add egraph rule to rewrite `x * C ==> x << log2(C)` when `C` is a power of two (#5647)
egraph opt rules: do `(icmp cc x x) == {0,1}` only for integer types. (#5438)

33 PRs in 5 months

… from 8 authors!

Project Health & Enablement

Nobody would take the time to write a manual pass to do that!

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

A: By doing nearly the same amount of work!

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

A: By doing nearly the same amount of work!

• E-graph interning ≈ GVN

• E-nodes are stored as instructions (same data structure)

• Initially, rewrites in egraph are equivalent to old pipeline

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

A: By doing nearly the same amount of work!

• Differences: code placement (reconstruct all vs. incremental) 
 multi-version (selection, rewrite multiple paths)

Performance: Qualitative Discussion

Q: How did we achieve near-parity?

A: By doing nearly the same amount of work!

“Pay as you go” is crucial for incremental adoption!

Possible Future Plans

• Instruction selector as extraction pass

• We have left-hand-side patterns for what the ISA can do efficiently

• Why not lower directly from eclasses?

• Somewhat complex interactions with scoped elaboration + pass direction

Possible Future Plans

• Optimization through block parameters (phi-nodes)

• Sparse conditional constant propagation! Unify branch-folding + const-
prop

• Challenge: deal with cycles

• Are there limited forms that operate in a single pass? (skip if backedge?)

Possible Future Plans

• Non-greedy instruction selection

• We do extraction before elaboration

• Optimal extraction depends on elaboration:

• multiple uses of a value can “share” its cost

• if another inst needs a value that is expensive, it becomes sunk cost

Possible Future Plans

• Fused / unrolled rewrites

• We have efficient rule dispatch (decision tree), but only one step at a time

• Can we statically unroll a path of rewrites?

• … and even elide insertion of intermediates if we know they’re “bad” (more
expensive, always subsumed)?

Possible Future Plans

• Instruction scheduling

• The ægraph throws away location information

• Scoped elaboration recomputes it

• The “as late as possible” schedule that results is often quite bad

• Heuristics from (i) register pressure, (ii) original code order, (iii) other?

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

1. Why

2. How

3. Cycles

4. Results

5. Lessons

we want a rewrite-based optimizer

to turn a CFG into an egraph and back again

why they occur, and what to do about them

how well does it work?

in translating research to production

Efficiency

• This is really important in production software

• Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

Efficiency

• This is really important in production software

• Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

• There is inherent tension w.r.t. moving fast + experimenting to “just get
results”, but “algorithm is robustly fast” is its own kind of result too

Efficiency

• This is really important in production software

• Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

• There is inherent tension w.r.t. moving fast + experimenting to “just get
results”, but “algorithm is robustly fast” is its own kind of result too

• Robustness/predictability is important (and distinct from “fast on average”)

Efficiency

• This is really important in production software

• Every percentage point counts: 1% might cost an engineer-month to
regain; and costs a lot operationally at scale

• There is inherent tension w.r.t. moving fast + experimenting to “just get
results”, but “algorithm is robustly fast” is its own kind of result too

• Robustness/predictability is important (and distinct from “fast on average”)

• We (practicing software engineers) need to do a better job of documenting “all
the usual tricks”!

Limits Induce Creativity

• This work in Cranelift started with “standard” e-graphs and egg

• When it wasn’t fast enough, I could have stopped and moved on!

• Requires the “correct” amount of unjustified optimism

Limits Induce Creativity

• “Bottom-up” vs. “top-down” thinking

• “I want to do eqsat” —> optimize all the computation needed for this, vs…

• I tried this first!

• … “I have N linear passes” —> which ideas can I keep?

Tradeoffs… and Incrementalism

• It’s OK to not solve the entire problem!

• The only real requirement is that we run the program correctly*

• Sometimes “this is the best point on the effort Pareto curve” and we’re done

Tradeoffs… and Incrementalism

• It’s OK to not solve the entire problem!

• The only real requirement is that we run the program correctly*

• Sometimes “this is the best point on the effort Pareto curve” and we’re done

• Sometimes, we can come up with better ideas later

• And this happens all the time in Cranelift

• View the codebase as a living, evolving understanding of problem domain

Tradeoffs… and Incrementalism

• Design for incrementalism by:

• Building frameworks (rewrite language/infra, …)

• Building guardrails (good testing, typesafe abstractions, well-documented
invariants)

Tradeoffs… and Incrementalism

• Design for incrementalism by:

• Building frameworks (rewrite language/infra, …)

• Building guardrails (good testing, typesafe abstractions, well-documented
invariants)

• Accept limits and ship, then fulfill last 20% of needs while plane is flying

Community Leverage Multipliers

• Let’s talk about “design for ___” a bit more

Community Leverage Multipliers

• Let’s talk about “design for ___” a bit more

• Design for community: find abstractions that allow modular, typesafe work
and enable many uses (verification!)

Community Leverage Multipliers

• Let’s talk about “design for ___” a bit more

• Design for community: find abstractions that allow modular, typesafe work
and enable many uses (verification!)

• We picked up the e-graph idea because

• It’s a clean abstraction

• It allows modular, easy contributions of mid-end optimizations

• It bridges the gap with academia a bit and pulls in new ideas

E-graphs… in Industry?

• Isn’t this bona-fide research? Am I not a software engineer in… industry?

E-graphs… in Industry?

• Isn’t this bona-fide research? Am I not a software engineer in… industry?

• Secret: software engineering is full of research problems

• Caveat: pick a domain like compilers

• Different kinds of problems with different considerations

E-graphs… in Industry?

• Isn’t this bona-fide research? Am I not a software engineer in… industry?

• Secret: software engineering is full of research problems

• Caveat: pick a domain like compilers

• Different kinds of problems with different considerations

• Different approach to risk; later in pipeline, less speculative

• (thank you for exploring e-graphs first!)

E-graphs… in Industry?

• Research is totally relevant to industry if it addresses industry’s needs: robust,
reliable, simple, reliable, fast, reliable

E-graphs… in Industry?

• Research is totally relevant to industry if it addresses industry’s needs: robust,
reliable, simple, reliable, fast, reliable

• Industry sometimes presents opportunities to rethink key infra (e.g. compiler)

• It can be hard to convincingly make a case for this in a vacuum in academia

• But good reasons exist (security, simplicity, agility, …)!

E-graphs… in Industry?

• Research is totally relevant to industry if it addresses industry’s needs: robust,
reliable, simple, reliable, fast, reliable

• Industry sometimes presents opportunities to rethink key infra (e.g. compiler)

• It can be hard to convincingly make a case for this in a vacuum in academia

• But good reasons exist (security, simplicity, agility, …)!

• Academia is idea-rich and searches for problems/motivations; 
Industry is problem-rich and searches for ideas/solutions

• Bridging the two is incredibly fruitful and rewarding!

Work with Cranelift!

• We love mentoring students and collaborating with researchers

• Verification (VeriISLE, Veriwasm, …); chaos-mode randomized testing;
exceptions; typed func-refs; e-graph-based fuzzing mutators; extensions of
custom DSLs; …

• There are many open problems and the need to solve them is immediate
and directly motivated

• It’s how we can work “smarter not harder” and keep in the game, as an
underdog — we all win!

Thanks!

• Links

• https://cranelift.dev/

• https://bytecodealliance.zulipchat.com/

• https://cfallin.org/

https://cranelift.dev/
https://bytecodealliance.zulipchat.com/
https://cfallin.org/

