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Eliminating Bugs Inside and Outside the Sandbox
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WebAssembly is a Secure Sandbox?

Wasm engine and 
compiler engineers:



CVE-2021-32629



CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…



CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…


• “The daemon keeps segfaulting”



CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…


• “The daemon keeps segfaulting” [this never happens]



CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…


• “The daemon keeps segfaulting” [this never happens]


• “faults are coming from inside compiled Wasm code”



CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…


• “The daemon keeps segfaulting” [this never happens]


• “faults are coming from inside compiled Wasm code”


• “I’m calling an incident”
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• Summary: a miscompilation could result in a Wasm instance accessing 
memory addresses 2GiB prior to its linear memory in host address space (!)

…   rdi, … 
add ecx, … # Wasm addr 
mov [rsp+K], ecx   # SPILL 
     # … 
movsx rcx, [rsp+K] # RELOAD 
add rdi, rcx 
mov eax, [rdi+8] 

1. Optimization: elide 32-to-64 
    zero-extends on x86-64 — 
    use implicit dest widening 
 
2. Optimization: spill only actual value width 
 
3. Bug: use upper bits of register when 
    technically undefined per IR->machine 
    mapping 
 
4. Questionable choice: sign-extend on reload??
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• Aside: it did happen again, two years later


• Summary: base + uextend(index << 3) folded to base + uextend(index) << 3 in 
x86-64 addressing mode selection; reach up to 34GiB beyond a memory


• One must imagine Sisyphus verification researchers happy
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• We put many instances in a single address space, and add software checks 
inline, to enable fast context switching — essential for many workloads!


• Browser: fast Wasm-to-JS interaction (~native func call) on one webpage


• Server-side: extremely dense multi-tenant environments (timeslicing)


• This is Wasm’s secret superpower (tiny sandboxes — nanoprocesses)


• But we must trust the compiler

SOSP 1993

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/
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• Engineered from scratch for verification (we have ~200KLoC existing code)


• Optimizations limited by provability (we don’t want to limit perf too much)


• Enormous manual effort (we’re a tiny team and verification is one of many 
demands on us; can’t afford ~engineer-century of work)

Anti-Goal
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• Can we verify a part of our compiler (where bugs are more common) more 
thoroughly?


• Can we verify limited properties of the code (e.g. linear memory sandboxing) 
end-to-end?

Potential Goals?

→ SMT on instruction selector rules (ASPLOS’24)

→ Proof-carrying code (ongoing)



Outline

• Formal Verification in Instruction Selection


• Proof-Carrying Code for Sandboxing Logic


• Guest-Code Correctness



Instruction Lowering Verification

BA RFC 15: ISLE instruction-selection (pattern-matching) DSL, Aug 2021



Instruction Lowering Verification

BA RFC 18: Cranelift roadmap for 2022 (Dec 2021)
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• Dec 2021: contact from both Alexa VanHattum and Fraser Brown 
                  (+ Alexa’s advisor Adrian Sampson and Fraser’s student 
                      Monica Pardeshi)

✅ Academic collaboration acquired; let’s go!
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Instruction Lowering Verification

Cranelift IR (CLIF) aarch64 machine code

rotr (rotate right) rotr (rotate right)

SMT (theory of bitvectors) SMT (theory of bitvectors)
(or counterexample)
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(lower (has_type $I64 (rotr x y)) …)
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Instruction Lowering Verification

InstResult.Inst

Inst.AluRRR (AluOp.Madd)

lower
has_type
value_def

InstructionData.BinaryOp (Op.Mul)

put_in_reg x put_in_reg y

value_def
InstructionData.BinaryOp (Op.Add)

value_def
InstructionData.Const

u64_from_imm64 1

put_in_reg z
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Instruction Lowering Verification
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Rust FFI (IR accessor primitives)
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cranelift/codegen/src/isa/aarch64/inst.isle



Instruction Lowering Verification

• Lots more to actually make this work!


• Type-polymorphism in rules —> “instantiate” at concrete widths


• Type-inference to use narrower bitvectors


• Full system of specifying “model domain” values for ISLE values


• Good ergonomics around showing counterexamples



Instruction Lowering Verification

• It finds real bugs


• Reproduced x86-64 amode bug (CVE-2023-26489)


• Arithmetic edge cases in divides, count-leading-sign of narrow values, 
boolean simplification rules, …


• Real counterexamples are invaluable


• Ongoing extension work (especially: tying to real ISA semantics)


• Ongoing discussions on how to integrate into our workflow to keep verified



Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F 
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er
 

(ru
le

s 
+ 

G
VN

 +
 

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n 

Se
le

ct
io

n

VCode

Re
gi

st
er

 
Al

lo
ca

tio
n

Machine 
Code



Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F 
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er
 

(ru
le

s 
+ 

G
VN

 +
 

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n 

Se
le

ct
io

n

VCode

Re
gi

st
er

 
Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)



Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F 
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er
 

(ru
le

s 
+ 

G
VN

 +
 

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n 

Se
le

ct
io

n

VCode

Re
gi

st
er

 
Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)

Translation 
Validation



Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F 
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er
 

(ru
le

s 
+ 

G
VN

 +
 

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n 

Se
le

ct
io

n

VCode

Re
gi

st
er

 
Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)

Translation 
Validation????



Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F 
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er
 

(ru
le

s 
+ 

G
VN

 +
 

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n 

Se
le

ct
io

n

VCode

Re
gi

st
er

 
Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)

Translation 
Validation????

+ integration/glue bugs!
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Sandbox Verification, End-to-End

• It even operates on Cranelift!


• … but not Wasmtime (older Lucet runtime)


• … and on the output of a much older (poorly optimizing) Cranelift

NDSS 2021
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• Verify memory safety (Wasm heap, funcref table), control-flow safety, and 
stack safety (accesses to stackframes) — focus here on Wasm heap


• Key idea: lattice-based abstract interpretation over machine registers

# rdi: heap base 
add eax, …    # an i32 Wasm address 
mov rbx, [rdi+rax+0x100]

rdi: HeapBase
rax: Bounded4GB

VeriWasm

access to 
  HeapBase + Bounded4GB -> 
  valid heap address
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• Update to modern Cranelift + Wasmtime?


• Prototyped after 2021 CVE for limited domain (one memory, no dynamic 
bounds checking)


• 30% compile-time overhead


• What about 2023, and full production feature support?
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• Verify memory safety (Wasm heap, funcref table), control-flow safety, and 
stack safety (accesses to stackframes) — focus here on Wasm heap


• Update to modern Cranelift + Wasmtime?


• Multiple memories and tables

Lucet

rdi

Wasmtime

r?? 
(regalloc)

vmctx
mem descriptor

4GiB + guard

bounds-checked
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• Verify memory safety (Wasm heap, funcref table), control-flow safety, and 
stack safety (accesses to stackframes) — focus here on Wasm heap


• Update to modern Cranelift + Wasmtime?


• Multiple memories and tables — import vs. inline, dynamic vs. statlc, 
shared vs. non-shared, different guard region sizes, …


• Also, the optimizer got better!
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Wanted: the Perfect Verifier

• Linear-time and -space verification

Compute an i32
Load from 4GiB-guard mem

How do we describe rax in the abstract domain?? 
rax < 4GiB  &&  rax < r9  &&  rax < r11

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Quadratic behavior! 🛑n2



Bounds-check (Spectre)

Load from dynamic mem

Wanted: the Perfect Verifier

• Linear-time and -space verification

Compute an i32
Load from 4GiB-guard mem

How do we describe rax in the abstract domain?? 
rax < 4GiB  &&  rax < r9  &&  rax < r11

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Two separate parts combined later 
-> Symbolic(123) and CompareResult(123, r9)?? 
 
How does this scale across GVN/value renames?
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• Portable across ISAs


• At least x86-64 and aarch64 (equally important production targets)


• With most logic platform-independent


• ISA-specific work should encode instruction semantics, but that’s it: 
 
mov rax, [r8 + 8*r9] -> rax = load(add(r8, scale(r9, 8))) 
 
ldr x20, [x19, w20, uxtw] -> x20 = load(add(x19, uextend(x20, 32, 64)))
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• … but we must not have to modify individual rules or passes to work with 
the verifier
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Wanted: the Perfect Verifier

• Linear-time and -space verification


• Portable across ISAs


• Easy to keep up-to-date as optimizer is modified


• Prove safety of all memory loads+stores


• Easily delineate our safety condition: “loads and stores occur according to 
some description/understanding of the runtime’s data layout”


• This description is in the TCB; and the runtime (e.g. memory.grow) is; but 
the compiler is not



Wanted: the Perfect Verifier

• Linear-time and -space verification


• Portable across ISAs


• Easy to keep up-to-date as optimizer is modified


• Prove safety of all memory loads+stores


• Fast enough to run in production (translation validation on all compilations)
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• First: dynamic and static bounds, separately -> nope, GVN can combine


• Second: lattice that includes both kinds of bounds -> nope, multiple dynamic 
memories


• Third: Set-of-upper-and-lower-bounds -> nope, not scalable


• Fourth: inequality solver (matrices + Gaussian reduction) -> nope, not scalable
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• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories


• What does work: static memories (like VeriWasm), over new Wasmtime data 
structures and Cranelift optimizations; 1% compile-time overhead


• I think I have something that will work, with a trick


• This is a workshop talk, after all!
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Proof-Carrying Code?

• Key idea: compiler emits proof steps to check — simpler than from-scratch 
analysis of binary artifact


• Think of it like “typed assembly” + type-preserving compilation

POPL 1997



Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast { 
    gv3 ! mem(mt0, 0x0, 0x0) = vmctx 
    gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned 
                               readonly checked gv3+80 
    mt0 = struct 88 
          { 80: i64 readonly ! mem(mt1, 0x0, 0x0) } 
    mt1 = memory 0x180000000 

block7(v0: i64, v1: i64): 
    v2 = ireduce.i32 v1 
    v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2 
    v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4 
    v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3 
    v6 = load.f64 little checked heap v5 
}
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Given fact: first arg is vmctx
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“memory types” describe layout
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facts on fields checked when loads are validated
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implicitly-validated fact based on range
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    gv3 ! mem(mt0, 0x0, 0x0) = vmctx 
    gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned 
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abstract-domain add operation
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function u0:0(i64 vmctx, i64) fast { 
    gv3 ! mem(mt0, 0x0, 0x0) = vmctx 
    gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned 
                               readonly checked gv3+80 
    mt0 = struct 88 
          { 80: i64 readonly ! mem(mt1, 0x0, 0x0) } 
    mt1 = memory 0x180000000 

block7(v0: i64, v1: i64): 
    v2 = ireduce.i32 v1 
    v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2 
    v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4 
    v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3 
    v6 = load.f64 little checked heap v5 
}

checked load permitted only when offset 
in-bounds for memory type (here 4GiB)
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    v2 ! dynamic_range(64, v1, v1)            = uextend.i64 v1 
    v3 ! dynamic_mem(mt1, 0, 0)               = global_value.i64 gv1 
    v4 ! dynamic_range(64, gv2, gv2)          = global_value.i64 gv2 
    v5 ! compare(uge, v1, gv2)                = icmp.i64 uge v2, v4 
    v6 ! dynamic_mem(mt1, v1, v1)             = iadd.i64 v3, v2 
    v7 ! dynamic_mem(mt1, 0, 0, nullable)     = iconst.i64 0 
    v8 ! dynamic_mem(mt1, 0, gv2-1, nullable) = select_spectre_guard v5, v7, v6 
    v9                                        = load.i64 checked v8 
    return v9 
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block0(v0 ! mem(mt0, 0, 0): i64, v1 ! dynamic_range(32, v1, v1): i32): 
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    v9                                        = load.i64 checked v8 
    return v9 
}

• Too many pieces to put together: compare; symbolic addr; symbolic bound; 
select operator


• Quadratic behavior arises from combination of these pieces when merged by 
optimizer
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Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1: i32): 
    v2                                        = uextend.i64 v1 
    v3 ! dynamic_mem(mt1, 0, 0)               = global_value.i64 gv1 
    v4 ! dynamic_range(64, gv2, gv2)          = global_value.i64 gv2 
    v5 ! dynamic_mem(mt1, 0, gv2-1, nullable) = dynamic_bound.i64 v3, v2, v4 
    v6                                        = load.i64 checked v5 
    return v6 
}

• Insight: if you can’t solve the problem, change the problem 
(carry through a “bounds-check” operator in the IR to a pseudo-machine-inst)


• Subtle but important impact: separate value identity for property with separate 
validation status



Proof-Carrying Code: Dynamic Bounds

v2 = uextend.i64 v1 

v3 = global_value.i64 gv1 
v4 = global_value.i64 gv2 

v5 = dynamic_bound.i64 v3, v2, v4 

v6 = load.i64 checked v5 
return v6

• Emit dynamic_bound as “pseudoinstruction” (bundled machine instructions) 
and check as one unit: can show that combined semantics correspond

mov rax, … 

mov rsi, [rdi+…] 
mov rcx, [rdi+…] 

xor r8, r8 
add rsi, rax 
cmp rax, rcx 
cmovae rsi, r8 ;; zero if out-of-bounds 

mov rax, [rsi]



Symbolic Register Allocator Checker

• We’ve verified only up to virtual register code (VCode) — regalloc still in TCB


• Can we do translation validation on regalloc separately?



Symbolic Register Allocator Checker

add v0, v1 
mov v3, [v2+v0*8] 
mov [v4+v5], v3 
ret

Register allocation: provide abstraction  
over real machine instructions with 
virtual registers
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Symbolic Register Allocator Checker

Equivalent?

- Scan forward through code

- Track “contents” of each register

- Validate each arg gets expected vreg

input: rax={v0}, rcx={v1}, r9={v2}, 
          r10={v4}, r11={v5} 
rax = {v0 (update)} 
r8 = {v3}

add rax, rcx 
mov r8, [r9+rax*8] 
mov [r10+r11], r8 
ret

add v0, v1 
mov v3, [v2+v0*8] 
mov [v4+v5], v3 
ret
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Symbolic Register Allocator Checker

• Aside: this is a fantastically effective way to write a new register allocator


• Production regalloc often involves a lot of heuristics and edge-cases with 
funny constraints


• I could not have found and resolved all edge-cases without it


• So effective that this is the only test method for regalloc2 (no static suite)


• We’ve never found a miscompilation due to RA in production in ~3 years
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…WebAssembly is Secure?

Sandbox boundary: 
- Formal verification of instruction sel 
- Translation validation of key parts 
   (regalloc, memory sandboxing?)

?? Secure?
Chaos



WebAssembly is Secure?

• What is the threat model?



WebAssembly is Secure?

• What is the threat model?


• Code attempting to exceed permissions on system: OK!



WebAssembly is Secure?

• What is the threat model?


• Code attempting to exceed permissions on system: OK!


• Code attempting to exceed permissions inside guest



WebAssembly is Secure?

• What is the threat model?


• Code attempting to exceed permissions on system: OK!


• Code attempting to exceed permissions inside guest


• Exploit runtime / language implementation bugs to…


• …Observe other requests’ data



WebAssembly is Secure?

• What is the threat model?


• Code attempting to exceed permissions on system: OK!


• Code attempting to exceed permissions inside guest


• Exploit runtime / language implementation bugs to…


• …Observe other requests’ data


• …Subvert authorization logic


• …Inject malicious content


• We still need a correct language implementation for application security



WebAssembly is Secure?



WebAssembly is Secure?

Defense-in-depth: per-request isolation 
-> even a buggy runtime cannot allow cross-user leakage



WebAssembly is Secure?

Defense-in-depth: per-request isolation 
-> even a buggy runtime cannot allow cross-user leakage
AKA: put the Wasm sandbox boundary between requests
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Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime


• Our friends at Mozilla do lots of fuzzing, testing, security things; 
SpiderMonkey is battle-tested


• Step 2: avoid the JIT compiler of that runtime


• Optimization logic bugs (especially type confusion) account for many CVEs


• But don’t you want performance?! (yes… we’ll get there)


• … and it’s all we can run on Wasm anyway, today


• Step 3: … fix performance   (???)
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An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written — 
implementation of a language


• Typical tiering architectures in JITs mean that interpreters are “simple” — 
focus on correctness rather than (too much) performance


• An interpreter is portable — and thus can be developed on native platforms

rr

gdb
perf

valgrind
asan

Native x86_64-linux Wasmtime
gdb kind of works

but steps through runtime too
DWARF transform assertion failures

😱



Single Source of Truth

• Interpreter will exist anyway (JIT tiers, fallback); is easier to get right; works 
fine on Wasm (naturally portable); it’s just… slow


• Can we keep the interpreter as the only language implementation, and 
somehow derive a compiler from it?



Compiler Backend?

switch(*pc++) { 
  case ADD: 
    auto a = pop(); 
    auto b = pop(); 
    push(a + b); 
    break; 
  case RET: 
    return pop(); 
}

ADD 
RET

func:
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    return pop(); 
}
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  auto b = pop(); 
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}



Compiler Backend?

switch(*pc++) { 
  case ADD: 
    auto a = pop(); 
    auto b = pop(); 
    push(a + b); 
    break; 
  case RET: 
    return pop(); 
}

ADD 
RET

func:

func() { 
  auto a = pop(); 
  auto b = pop(); 
  push(a + b); 
  return pop(); 
}

Key insight: Wasm is a small, introspectable, well-behaved IR; 
partial evaluation should be tractable (moreso than on native code)
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weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect 
to some constant inputs (namely, interpreted bytecode)


• Very very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original


• Gives us a compiler “for free” once we have an interpreter
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Specialization Intrinsics
void interp(bytecode* pc) { 
 
  while (true) { 
    switch (*pc++) { 
      case OP1: 
        … 
 
        break; 
      case OP2: 
        … 
 
        break; 
    } 
  } 
}

void interp(bytecode* pc) { 
  weval::push_context(pc); 
  while (true) { 
    switch (*pc++) { 
      case OP1: 
        … 
        weval::update_context(pc); 
        break; 
      case OP2: 
        … 
        weval::update_context(pc); 
        break; 
    } 
  } 
}



Specialization Intrinsics

1. “No magic”: only expand code 
where interpreter specifies via 
context mechanism


2. Partially evaluate iterations of the 
interpreter loop in a context-
sensitive way, where the context 
is the bytecode PC


3. … and that’s it.

void interp(bytecode* pc) { 
  weval::push_context(pc); 
  while (true) { 
    switch (*pc++) { 
      case OP1: 
        … 
        weval::update_context(pc); 
        break; 
      case OP2: 
        … 
        weval::update_context(pc); 
        break; 
    } 
  } 
}
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Discussion: Compilers from Interpreters

• This works; shipping in StarlingMonkey runtime; ~2-3x speedups


• We are deriving a JIT from first principles from an interpreter


• We are avoiding doing anything special or language/JIT-engine-specific


• We think we can get more optimizations by writing semantics-preserving rules


• E.g., profile-guided speculative inlining + box-unbox elision to get type-
specialized unboxing in JS



Discussion: Correctness-Focused Runtimes

• Correct software is a never-fully-attained goal (realistically)


• But we can carefully delineate abstraction boundaries and validate them 
separately
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Discussion: Correctness-Focused Runtimes

• Observation: limited formal methods can be practical in practice


• SMT-based checking of compiler lowering rules


• Symbolic checker of register allocator


• Maybe? proof-carrying code for sandboxing logic


• Observation: meta-compilers (deriving compilers from simpler 
representations) can be practical in practice 

• weval is much smaller than the full compiler-to-Wasm would have been


• Wasm has set an excellent precedent for explicit semantics, static typing, and 
focus on small clean abstractions



Thanks! Questions?


