
Chris Fallin (F5)
Invited Talk, WAW 2025

Full-Stack Correctness in Wasm
Eliminating Bugs Inside and Outside the Sandbox

WebAssembly is a Secure Sandbox

WebAssembly is a Secure Sandbox

WebAssembly is a Secure Sandbox

https://bytecodealliance.org/articles/announcing-the-bytecode-alliance

WebAssembly is a Secure Sandbox

https://bytecodealliance.org/articles/announcing-the-bytecode-alliance

WebAssembly is a Secure Sandbox

https://bytecodealliance.org/articles/announcing-the-bytecode-alliance

12x

WebAssembly is a Secure Sandbox

https://wasmtime/dev/

https://cranelift.dev/

https://wasmtime/dev/
https://cranelift.dev/

WebAssembly is a Secure Sandbox

https://wasmtime/dev/

https://cranelift.dev/

https://wasmtime/dev/
https://cranelift.dev/

WebAssembly is a Secure Sandbox

https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/

WebAssembly is a Secure Sandbox

https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/

WebAssembly is a Secure Sandbox

https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/

WebAssembly is a Secure Sandbox

WebAssembly is a Secure Sandbox

WebAssembly is a Secure Sandbox

WebAssembly is a Secure Sandbox?

Wasm engine and
compiler engineers:

CVE-2021-32629

CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…

CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…

• “The daemon keeps segfaulting”

CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…

• “The daemon keeps segfaulting” [this never happens]

CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…

• “The daemon keeps segfaulting” [this never happens]

• “faults are coming from inside compiled Wasm code”

CVE-2021-32629

• April 21, 2021 was a beautiful morning in California…

• “The daemon keeps segfaulting” [this never happens]

• “faults are coming from inside compiled Wasm code”

• “I’m calling an incident”

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

linear memory linear memory

4GiB + guard

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

i32.load offset=8

4GiB + guard

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

i32.load offset=8

v0 = base # i64
v1 = … # i32
v2 = uextend.i64 v1
v3 = iadd.i64 v0, v2
v4 = load.i32 v3+8

4GiB + guard

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

v0 = base # i64
v1 = … # i32
v2 = uextend.i64 v1
v3 = iadd.i64 v0, v2
v4 = load.i32 v3+8

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
 # (nothing)
add rdi, rcx
mov eax, [rdi+8]

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

v0 = base # i64
v1 = … # i32
v2 = uextend.i64 v1
v3 = iadd.i64 v0, v2
v4 = load.i32 v3+8

4GiB + guard
x86-64: implicit zero-extend on all 32-bit insts

… rdi, …
add ecx, … # Wasm addr
 # (nothing)
add rdi, rcx
mov eax, [rdi+8]

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

v0 = base # i64
v1 = … # i32
v2 = uextend.i64 v1
v3 = iadd.i64 v0, v2
v4 = load.i32 v3+8

4GiB + guard
x86-64: implicit zero-extend on all 32-bit insts 
—> optimization: elide uextend

… rdi, …
add ecx, … # Wasm addr
 # (nothing)
add rdi, rcx
mov eax, [rdi+8]

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
 # (nothing)
add rdi, rcx
mov eax, [rdi+8]

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
 # REGALLOC SPILL
 # …
 # REGALLOC RELOAD
add rdi, rcx
mov eax, [rdi+8]

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], rcx # SPILL
 # …
mov rcx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], rcx # SPILL
 # …
mov rcx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

Optimization: spill/reload actual value width 
(important for f32/f64 in 128-bit XMM regs)

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], ecx # SPILL
 # …
mov ecx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

Optimization: spill/reload actual value width 
(important for f32/f64 in 128-bit XMM regs)

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], rcx # SPILL
 # …
mov rcx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

1. Optimization: elide 32-to-64 
 zero-extends on x86-64 — 
 use implicit dest widening 

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], ecx # SPILL
 # …
mov ecx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

1. Optimization: elide 32-to-64 
 zero-extends on x86-64 — 
 use implicit dest widening 
 
2. Optimization: spill only actual value width 
 

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], ecx # SPILL
 # …
mov ecx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

1. Optimization: elide 32-to-64 
 zero-extends on x86-64 — 
 use implicit dest widening 
 
2. Optimization: spill only actual value width 
 
3. Bug: use upper bits of register when 
 technically undefined per IR->machine 
 mapping

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], ecx # SPILL
 # …
mov ecx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

1. Optimization: elide 32-to-64 
 zero-extends on x86-64 — 
 use implicit dest widening 
 
2. Optimization: spill only actual value width 
 
3. Bug: use upper bits of register when 
 technically undefined per IR->machine 
 mapping 
 —> we elided uextend but value is still narrow

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], ecx # SPILL
 # …
movsx rcx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

1. Optimization: elide 32-to-64 
 zero-extends on x86-64 — 
 use implicit dest widening 
 
2. Optimization: spill only actual value width 
 
3. Bug: use upper bits of register when 
 technically undefined per IR->machine 
 mapping 
 
4. Questionable choice: sign-extend on reload??

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], ecx # SPILL
 # …
movsx rcx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

Wasm addr: 3GiB

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

… rdi, …
add ecx, … # Wasm addr
mov [rsp+K], ecx # SPILL
 # …
movsx rcx, [rsp+K] # RELOAD
add rdi, rcx
mov eax, [rdi+8]

Wasm addr: 3GiB

native offset: -1GiB

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

Wasm addr: 3GiB

native offset: -1GiB
linear memory

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory

host address space

4GiB + guard

Wasm addr: 3GiB

native offset: -1GiB
linear memory

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

• Aftermath: emergency version bump internally; patch release; forcing function
to develop our CVE release process in BA / Wasmtime (since exercised more!)

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

• Aftermath: emergency version bump internally; patch release; forcing function
to develop our CVE release process in BA / Wasmtime (since exercised more!)

• How can we avoid ever having this problem again?

CVE-2021-32629

• Summary: a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

• Aftermath: emergency version bump internally; patch release; forcing function
to develop our CVE release process in BA / Wasmtime (since exercised more!)

• How can we avoid ever having this problem again*?

CVE-2023-26489

CVE-2023-26489

• Aside: it did happen again, two years later

• Summary: base + uextend(index << 3) folded to base + uextend(index) << 3 in
x86-64 addressing mode selection; reach up to 34GiB beyond a memory

CVE-2023-26489

• Aside: it did happen again, two years later

• Summary: base + uextend(index << 3) folded to base + uextend(index) << 3 in
x86-64 addressing mode selection; reach up to 34GiB beyond a memory

• One must imagine Sisyphus verification researchers happy

SFI and Trusting Compilers

SOSP 1993

SFI and Trusting Compilers

• We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

SOSP 1993

SFI and Trusting Compilers

• We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

• Browser: fast Wasm-to-JS interaction (~native func call) on one webpage

• Server-side: extremely dense multi-tenant environments (timeslicing)

SOSP 1993

SFI and Trusting Compilers

• We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

• Browser: fast Wasm-to-JS interaction (~native func call) on one webpage

• Server-side: extremely dense multi-tenant environments (timeslicing)

• This is Wasm’s secret superpower (tiny sandboxes — nanoprocesses)

SOSP 1993

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

SFI and Trusting Compilers

• We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

• Browser: fast Wasm-to-JS interaction (~native func call) on one webpage

• Server-side: extremely dense multi-tenant environments (timeslicing)

• This is Wasm’s secret superpower (tiny sandboxes — nanoprocesses)

• But we must trust the compiler

SOSP 1993

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

How to Write a Correct Compiler

• We do a lot to try to ensure correctness

How to Write a Correct Compiler

• We do a lot to try to ensure correctness

• Differential fuzzing against: Wasm spec interp, wasmi, V8

How to Write a Correct Compiler

• We do a lot to try to ensure correctness

• Differential fuzzing against: Wasm spec interp, wasmi, V8

• Fuzzing with symbolic translation validation of register allocation

How to Write a Correct Compiler

• We do a lot to try to ensure correctness

• Differential fuzzing against: Wasm spec interp, wasmi, V8

• Fuzzing with symbolic translation validation of register allocation

• “Chaos testing” in compiler pipeline

How to Write a Correct Compiler

• We do a lot to try to ensure correctness

• Differential fuzzing against: Wasm spec interp, wasmi, V8

• Fuzzing with symbolic translation validation of register allocation

• “Chaos testing” in compiler pipeline

• trial by fire in real world: Cranelift as rustc backend

How to Write a Correct Compiler

• We do a lot to try to ensure correctness

• Differential fuzzing against: Wasm spec interp, wasmi, V8

• Fuzzing with symbolic translation validation of register allocation

• “Chaos testing” in compiler pipeline

• trial by fire in real world: Cranelift as rustc backend

• Somehow these CVEs still happen occasionally (~0.5 per year)

How to Write a Correct Compiler

• We do a lot to try to ensure correctness

• Differential fuzzing against: Wasm spec interp, wasmi, V8

• Fuzzing with symbolic translation validation of register allocation

• “Chaos testing” in compiler pipeline

• trial by fire in real world: Cranelift as rustc backend

• Somehow these CVEs still happen occasionally (~0.5 per year)

• “I would simply prove the compiler correct”

How to Write a Correct Compiler

• “I would simply prove the compiler correct”

How to Write a Correct Compiler

• “I would simply prove the compiler correct”

✅ Challenge Accepted

Anti-Goal

Anti-Goal

• Engineered from scratch for verification (we have ~200KLoC existing code)

• Optimizations limited by provability (we don’t want to limit perf too much)

• Enormous manual effort (we’re a tiny team and verification is one of many
demands on us; can’t afford ~engineer-century of work)

Anti-Goal

• Can we verify a part of our compiler (where bugs are more common) more
thoroughly?

• Can we verify limited properties of the code (e.g. linear memory sandboxing)
end-to-end?

Potential Goals?

• Can we verify a part of our compiler (where bugs are more common) more
thoroughly?

• Can we verify limited properties of the code (e.g. linear memory sandboxing)
end-to-end?

Potential Goals?

→ SMT on instruction selector rules (ASPLOS’24)

→ Proof-carrying code (ongoing)

Outline

• Formal Verification in Instruction Selection

• Proof-Carrying Code for Sandboxing Logic

• Guest-Code Correctness

Instruction Lowering Verification

BA RFC 15: ISLE instruction-selection (pattern-matching) DSL, Aug 2021

Instruction Lowering Verification

BA RFC 18: Cranelift roadmap for 2022 (Dec 2021)

Instruction Lowering Verification

• Dec 2021: contact from both Alexa VanHattum and Fraser Brown 
 (+ Alexa’s advisor Adrian Sampson and Fraser’s student 
 Monica Pardeshi)

Instruction Lowering Verification

• Dec 2021: contact from both Alexa VanHattum and Fraser Brown 
 (+ Alexa’s advisor Adrian Sampson and Fraser’s student 
 Monica Pardeshi)

✅ Academic collaboration acquired; let’s go!

Instruction Lowering Verification

ASPLOS 2024

Instruction Lowering Verification

Instruction Lowering Verification

Cranelift IR (CLIF)

rotr (rotate right)

Instruction Lowering Verification

Cranelift IR (CLIF) aarch64 machine code

rotr (rotate right) rotr (rotate right)

Instruction Lowering Verification

Cranelift IR (CLIF) aarch64 machine code

rotr (rotate right) rotr (rotate right)

SMT (theory of bitvectors) SMT (theory of bitvectors)

Instruction Lowering Verification

Cranelift IR (CLIF) aarch64 machine code

rotr (rotate right) rotr (rotate right)

SMT (theory of bitvectors) SMT (theory of bitvectors)

Instruction Lowering Verification

Cranelift IR (CLIF) aarch64 machine code

rotr (rotate right) rotr (rotate right)

SMT (theory of bitvectors) SMT (theory of bitvectors)
(or counterexample)

Instruction Lowering Verification

(lower (has_type $I64 (rotr x y)) …)

Instruction Lowering Verification

lower
has_type

value_def

InstructionData.BinaryOp (Op.Rotr)

Instruction Lowering Verification

lower
has_type

value_def

(a64_rotr x y)

InstructionData.BinaryOp (Op.Rotr)

Instruction Lowering Verification

InstResult.Inst
Inst.AluRRR (AluOp.Rotr)

lower
has_type

value_def

InstructionData.BinaryOp (Op.Rotr)

Instruction Lowering Verification

InstResult.Inst
Inst.AluRRR (AluOp.Rotr)

lower
has_type

value_def

InstructionData.BinaryOp (Op.Rotr)

put_in_reg x
put_in_reg y

Instruction Lowering Verification

InstResult.Inst

Inst.AluRRR (AluOp.Madd)

lower
has_type
value_def

InstructionData.BinaryOp (Op.Mul)

put_in_reg x put_in_reg y

value_def
InstructionData.BinaryOp (Op.Add)

value_def
InstructionData.Const

u64_from_imm64 1

put_in_reg z

Instruction Lowering Verification

some node

some node some node

some node some node

some node
some node

some node some node

some node

some node

some node

some node

some node

some node

some node
some node

some node

some node

some node

lower
some node

some node

some node

some node

some node some node

some node

some node

some node

Instruction Lowering Verification

some node

some node some node

some node some node

some node
some node

some node some node

some node

some node

some node

some node

some node

some node

some node
some node

some node

some node

lower
some node

some node

some node

some node

some node some node

some node

some node

Rust FFI (instruction emit primitives)

Rust FFI (IR accessor primitives)

Rust FFI (instruction emit primitives)

Instruction Lowering Verification

some node

some node some node

some node some node

some node
some node

some node some node

some node

some node

some node

some node

some node

some node

some node
some node

some node

some node

lower
some node

some node

some node

some node

some node some node

some node

some node

spec

spec

Rust FFI (IR accessor primitives)

spec

spec

spec

Instruction Lowering Verification

cranelift/codegen/src/isa/aarch64/inst.isle

Instruction Lowering Verification

• Lots more to actually make this work!

• Type-polymorphism in rules —> “instantiate” at concrete widths

• Type-inference to use narrower bitvectors

• Full system of specifying “model domain” values for ISLE values

• Good ergonomics around showing counterexamples

Instruction Lowering Verification

• It finds real bugs

• Reproduced x86-64 amode bug (CVE-2023-26489)

• Arithmetic edge cases in divides, count-leading-sign of narrow values,
boolean simplification rules, …

• Real counterexamples are invaluable

• Ongoing extension work (especially: tying to real ISA semantics)

• Ongoing discussions on how to integrate into our workflow to keep verified

Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er

(ru
le

s
+

G
VN

 +

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n

Se
le

ct
io

n

VCode

Re
gi

st
er

Al

lo
ca

tio
n

Machine 
Code

Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er

(ru
le

s
+

G
VN

 +

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n

Se
le

ct
io

n

VCode

Re
gi

st
er

Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)

Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er

(ru
le

s
+

G
VN

 +

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n

Se
le

ct
io

n

VCode

Re
gi

st
er

Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)

Translation 
Validation

Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er

(ru
le

s
+

G
VN

 +

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n

Se
le

ct
io

n

VCode

Re
gi

st
er

Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)

Translation 
Validation????

Instruction Lowering Verification

• But… can we verify something end-to-end?
W

as
m

-t
o-

C
LI

F
tra

ns
la

to
r

Wasm 
bytecode CLIF

O
pt

im
iz

er

(ru
le

s
+

G
VN

 +

LI
C

M
 +

 a
lia

s)

CLIF

In
st

ru
ct

io
n

Se
le

ct
io

n

VCode

Re
gi

st
er

Al

lo
ca

tio
n

Machine 
Code

Verified 
(in progress)

Translation 
Validation????

+ integration/glue bugs!

Sandbox Verification, End-to-End

• “Prove the compiler correct” is Hard(tm)

Sandbox Verification, End-to-End

• “Prove the compiler correct” is Hard(tm)

• Can we prove that all memory accesses in machine code access Wasm
memories with valid bounds-checking (or other internal VM data)?

Sandbox Verification, End-to-End

• “Prove the compiler correct” is Hard(tm)

• Can we prove that all memory accesses in machine code access Wasm
memories with valid bounds-checking (or other internal VM data)?

• Build an independent checker that operates on machine code: compiler no
longer in the TCB (!)

Sandbox Verification, End-to-End

• “Prove the compiler correct” is Hard(tm)

• Can we prove that all memory accesses in machine code access Wasm
memories with valid bounds-checking (or other internal VM data)?

• Build an independent checker that operates on machine code: compiler no
longer in the TCB (!) NDSS 2021

Sandbox Verification, End-to-End

• It even operates on Cranelift!

NDSS 2021

Sandbox Verification, End-to-End

• It even operates on Cranelift!

• … but not Wasmtime (older Lucet runtime)

NDSS 2021

Sandbox Verification, End-to-End

• It even operates on Cranelift!

• … but not Wasmtime (older Lucet runtime)

• … and on the output of a much older (poorly optimizing) Cranelift

NDSS 2021

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Key idea: lattice-based abstract interpretation over machine registers

rdi: heap base
add eax, … # an i32 Wasm address
mov rbx, [rdi+rax+0x100]

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Key idea: lattice-based abstract interpretation over machine registers

rdi: heap base
add eax, … # an i32 Wasm address
mov rbx, [rdi+rax+0x100]

VeriWasm

rdi: HeapBase

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Key idea: lattice-based abstract interpretation over machine registers

rdi: heap base
add eax, … # an i32 Wasm address
mov rbx, [rdi+rax+0x100]

rdi: HeapBase

VeriWasm

rax: Bounded4GB

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Key idea: lattice-based abstract interpretation over machine registers

rdi: heap base
add eax, … # an i32 Wasm address
mov rbx, [rdi+rax+0x100]

rdi: HeapBase
rax: Bounded4GB

VeriWasm

access to 
 HeapBase + Bounded4GB -> 
 valid heap address

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Prototyped after 2021 CVE for limited domain (one memory, no dynamic
bounds checking)

• 30% compile-time overhead

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Prototyped after 2021 CVE for limited domain (one memory, no dynamic
bounds checking)

• 30% compile-time overhead

• What about 2023, and full production feature support?

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Multiple memories and tables

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Multiple memories and tables

Lucet

rdi
Single heap (4GiB + guard)

vmctx (globals, misc state)

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Multiple memories and tables

Lucet

rdi

Wasmtime

r??
(regalloc)

vmctx (globals, memories, tables)

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Multiple memories and tables

Lucet

rdi

Wasmtime

r??
(regalloc)

vmctx
mem descriptor

4GiB + guard

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Multiple memories and tables

Lucet

rdi

Wasmtime

r??
(regalloc)

vmctx
mem descriptor

4GiB + guard

bounds-checked

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Multiple memories and tables — import vs. inline, dynamic vs. statlc,
shared vs. non-shared, different guard region sizes, …

VeriWasm

• Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

• Update to modern Cranelift + Wasmtime?

• Multiple memories and tables — import vs. inline, dynamic vs. statlc,
shared vs. non-shared, different guard region sizes, …

• Also, the optimizer got better!

Wanted: the Perfect Verifier

• Linear-time and -space verification

Wanted: the Perfect Verifier

• Linear-time and -space verification

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Wanted: the Perfect Verifier

• Linear-time and -space verification

Compute an i32add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Wanted: the Perfect Verifier

• Linear-time and -space verification

Compute an i32
Load from 4GiB-guard mem

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Wanted: the Perfect Verifier

• Linear-time and -space verification

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Compute an i32
Load from 4GiB-guard mem

Bounds-check (Spectre)

Load from dynamic mem

Wanted: the Perfect Verifier

• Linear-time and -space verification

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Compute an i32
Load from 4GiB-guard mem

How do we describe rax in the abstract domain??

Bounds-check (Spectre)

Load from dynamic mem

Wanted: the Perfect Verifier

• Linear-time and -space verification

Compute an i32
Load from 4GiB-guard mem

Bounds-check (Spectre)

Load from dynamic mem

How do we describe rax in the abstract domain?? 
rax < 4GiB && rax < r9 && rax < r11

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Bounds-check (Spectre)

Load from dynamic mem

Wanted: the Perfect Verifier

• Linear-time and -space verification

Compute an i32
Load from 4GiB-guard mem

How do we describe rax in the abstract domain?? 
rax < 4GiB && rax < r9 && rax < r11

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Quadratic behavior! 🛑n2

Bounds-check (Spectre)

Load from dynamic mem

Wanted: the Perfect Verifier

• Linear-time and -space verification

Compute an i32
Load from 4GiB-guard mem

How do we describe rax in the abstract domain?? 
rax < 4GiB && rax < r9 && rax < r11

add eax, … 
mov rbx, [r8+rax] 
add r10, rax 
cmp rax, r9 
cmovae r10, <zero’d reg> 
mov rcx, [r10] 
add r12, rax 
cmp rax, r11 
cmovae r12, <zero’d reg> 
mov rdx, [r12]

Two separate parts combined later 
-> Symbolic(123) and CompareResult(123, r9)?? 
 
How does this scale across GVN/value renames?

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• At least x86-64 and aarch64 (equally important production targets)

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• At least x86-64 and aarch64 (equally important production targets)

• With most logic platform-independent

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• At least x86-64 and aarch64 (equally important production targets)

• With most logic platform-independent

• ISA-specific work should encode instruction semantics, but that’s it:

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• At least x86-64 and aarch64 (equally important production targets)

• With most logic platform-independent

• ISA-specific work should encode instruction semantics, but that’s it: 
 
mov rax, [r8 + 8*r9] -> rax = load(add(r8, scale(r9, 8)))

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• At least x86-64 and aarch64 (equally important production targets)

• With most logic platform-independent

• ISA-specific work should encode instruction semantics, but that’s it: 
 
mov rax, [r8 + 8*r9] -> rax = load(add(r8, scale(r9, 8))) 
 
ldr x20, [x19, w20, uxtw] -> x20 = load(add(x19, uextend(x20, 32, 64)))

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• Easy to keep up-to-date as optimizer is modified

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• Easy to keep up-to-date as optimizer is modified

• Adding clever rewrites might require more domain knowledge encoded

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• Easy to keep up-to-date as optimizer is modified

• Adding clever rewrites might require more domain knowledge encoded

• … but we must not have to modify individual rules or passes to work with
the verifier

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• Easy to keep up-to-date as optimizer is modified

• Prove safety of all memory loads+stores

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• Easy to keep up-to-date as optimizer is modified

• Prove safety of all memory loads+stores

• Easily delineate our safety condition: “loads and stores occur according to
some description/understanding of the runtime’s data layout”

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• Easy to keep up-to-date as optimizer is modified

• Prove safety of all memory loads+stores

• Easily delineate our safety condition: “loads and stores occur according to
some description/understanding of the runtime’s data layout”

• This description is in the TCB; and the runtime (e.g. memory.grow) is; but
the compiler is not

Wanted: the Perfect Verifier

• Linear-time and -space verification

• Portable across ISAs

• Easy to keep up-to-date as optimizer is modified

• Prove safety of all memory loads+stores

• Fast enough to run in production (translation validation on all compilations)

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

• First: dynamic and static bounds, separately

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

• First: dynamic and static bounds, separately -> nope, GVN can combine

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

• First: dynamic and static bounds, separately -> nope, GVN can combine

• Second: lattice that includes both kinds of bounds -> nope, multiple
dynamic memories

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

• First: dynamic and static bounds, separately -> nope, GVN can combine

• Second: lattice that includes both kinds of bounds -> nope, multiple
dynamic memories

• Third: Set-of-upper-and-lower-bounds -> nope, not scalable

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

• First: dynamic and static bounds, separately -> nope, GVN can combine

• Second: lattice that includes both kinds of bounds -> nope, multiple dynamic
memories

• Third: Set-of-upper-and-lower-bounds -> nope, not scalable

• Fourth: inequality solver (matrices + Gaussian reduction) -> nope, not scalable

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

• I think I have something that will work, with a trick

Spoiler: Work-in-Progress

• I’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

• What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

• I think I have something that will work, with a trick

• This is a workshop talk, after all!

Proof-Carrying Code?

• Key idea: compiler emits proof steps to check — simpler than from-scratch
analysis of binary artifact

POPL 1997

Proof-Carrying Code?

• Key idea: compiler emits proof steps to check — simpler than from-scratch
analysis of binary artifact

• Think of it like “typed assembly” + type-preserving compilation

POPL 1997

Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast {
 gv3 ! mem(mt0, 0x0, 0x0) = vmctx
 gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned
 readonly checked gv3+80
 mt0 = struct 88
 { 80: i64 readonly ! mem(mt1, 0x0, 0x0) }
 mt1 = memory 0x180000000

block7(v0: i64, v1: i64):
 v2 = ireduce.i32 v1
 v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2
 v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4
 v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3
 v6 = load.f64 little checked heap v5
}

Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast {
 gv3 ! mem(mt0, 0x0, 0x0) = vmctx
 gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned
 readonly checked gv3+80
 mt0 = struct 88
 { 80: i64 readonly ! mem(mt1, 0x0, 0x0) }
 mt1 = memory 0x180000000

block7(v0: i64, v1: i64):
 v2 = ireduce.i32 v1
 v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2
 v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4
 v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3
 v6 = load.f64 little checked heap v5
}

Given fact: first arg is vmctx

Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast {
 gv3 ! mem(mt0, 0x0, 0x0) = vmctx
 gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned
 readonly checked gv3+80
 mt0 = struct 88
 { 80: i64 readonly ! mem(mt1, 0x0, 0x0) }
 mt1 = memory 0x180000000

block7(v0: i64, v1: i64):
 v2 = ireduce.i32 v1
 v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2
 v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4
 v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3
 v6 = load.f64 little checked heap v5
}

“memory types” describe layout

Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast {
 gv3 ! mem(mt0, 0x0, 0x0) = vmctx
 gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned
 readonly checked gv3+80
 mt0 = struct 88
 { 80: i64 readonly ! mem(mt1, 0x0, 0x0) }
 mt1 = memory 0x180000000

block7(v0: i64, v1: i64):
 v2 = ireduce.i32 v1
 v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2
 v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4
 v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3
 v6 = load.f64 little checked heap v5
}

facts on fields checked when loads are validated

Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast {
 gv3 ! mem(mt0, 0x0, 0x0) = vmctx
 gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned
 readonly checked gv3+80
 mt0 = struct 88
 { 80: i64 readonly ! mem(mt1, 0x0, 0x0) }
 mt1 = memory 0x180000000

block7(v0: i64, v1: i64):
 v2 = ireduce.i32 v1
 v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2
 v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4
 v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3
 v6 = load.f64 little checked heap v5
}

implicitly-validated fact based on range

Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast {
 gv3 ! mem(mt0, 0x0, 0x0) = vmctx
 gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned
 readonly checked gv3+80
 mt0 = struct 88
 { 80: i64 readonly ! mem(mt1, 0x0, 0x0) }
 mt1 = memory 0x180000000

block7(v0: i64, v1: i64):
 v2 = ireduce.i32 v1
 v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2
 v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4
 v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3
 v6 = load.f64 little checked heap v5
}

abstract-domain add operation

Proof-Carrying Code
function u0:0(i64 vmctx, i64) fast {
 gv3 ! mem(mt0, 0x0, 0x0) = vmctx
 gv4 ! mem(mt1, 0x0, 0x0) = load.i64 notrap aligned
 readonly checked gv3+80
 mt0 = struct 88
 { 80: i64 readonly ! mem(mt1, 0x0, 0x0) }
 mt1 = memory 0x180000000

block7(v0: i64, v1: i64):
 v2 = ireduce.i32 v1
 v3 ! range(64, 0x0, 0xffffffff) = uextend.i64 v2
 v4 ! mem(mt1, 0x0, 0x0) = global_value.i64 gv4
 v5 ! mem(mt1, 0x0, 0xffffffff) = iadd v4, v3
 v6 = load.f64 little checked heap v5
}

checked load permitted only when offset 
in-bounds for memory type (here 4GiB)

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1 ! dynamic_range(32, v1, v1): i32):
 v2 ! dynamic_range(64, v1, v1) = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! compare(uge, v1, gv2) = icmp.i64 uge v2, v4
 v6 ! dynamic_mem(mt1, v1, v1) = iadd.i64 v3, v2
 v7 ! dynamic_mem(mt1, 0, 0, nullable) = iconst.i64 0
 v8 ! dynamic_mem(mt1, 0, gv2-1, nullable) = select_spectre_guard v5, v7, v6
 v9 = load.i64 checked v8
 return v9
}

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1 ! dynamic_range(32, v1, v1): i32):
 v2 ! dynamic_range(64, v1, v1) = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! compare(uge, v1, gv2) = icmp.i64 uge v2, v4
 v6 ! dynamic_mem(mt1, v1, v1) = iadd.i64 v3, v2
 v7 ! dynamic_mem(mt1, 0, 0, nullable) = iconst.i64 0
 v8 ! dynamic_mem(mt1, 0, gv2-1, nullable) = select_spectre_guard v5, v7, v6
 v9 = load.i64 checked v8
 return v9
}

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1 ! dynamic_range(32, v1, v1): i32):
 v2 ! dynamic_range(64, v1, v1) = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! compare(uge, v1, gv2) = icmp.i64 uge v2, v4
 v6 ! dynamic_mem(mt1, v1, v1) = iadd.i64 v3, v2
 v7 ! dynamic_mem(mt1, 0, 0, nullable) = iconst.i64 0
 v8 ! dynamic_mem(mt1, 0, gv2-1, nullable) = select_spectre_guard v5, v7, v6
 v9 = load.i64 checked v8
 return v9
}

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1 ! dynamic_range(32, v1, v1): i32):
 v2 ! dynamic_range(64, v1, v1) = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! compare(uge, v1, gv2) = icmp.i64 uge v2, v4
 v6 ! dynamic_mem(mt1, v1, v1) = iadd.i64 v3, v2
 v7 ! dynamic_mem(mt1, 0, 0, nullable) = iconst.i64 0
 v8 ! dynamic_mem(mt1, 0, gv2-1, nullable) = select_spectre_guard v5, v7, v6
 v9 = load.i64 checked v8
 return v9
}

• Too many pieces to put together: compare; symbolic addr; symbolic bound;
select operator

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1 ! dynamic_range(32, v1, v1): i32):
 v2 ! dynamic_range(64, v1, v1) = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! compare(uge, v1, gv2) = icmp.i64 uge v2, v4
 v6 ! dynamic_mem(mt1, v1, v1) = iadd.i64 v3, v2
 v7 ! dynamic_mem(mt1, 0, 0, nullable) = iconst.i64 0
 v8 ! dynamic_mem(mt1, 0, gv2-1, nullable) = select_spectre_guard v5, v7, v6
 v9 = load.i64 checked v8
 return v9
}

• Too many pieces to put together: compare; symbolic addr; symbolic bound;
select operator

• Quadratic behavior arises from combination of these pieces when merged by
optimizer

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1 ! dynamic_range(32, v1, v1): i32):
 v2 ! dynamic_range(64, v1, v1) = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! compare(uge, v1, gv2) = icmp.i64 uge v2, v4
 v6 ! dynamic_mem(mt1, v1, v1) = iadd.i64 v3, v2
 v7 ! dynamic_mem(mt1, 0, 0, nullable) = iconst.i64 0
 v8 ! dynamic_mem(mt1, 0, gv2-1, nullable) = select_spectre_guard v5, v7, v6
 v9 = load.i64 checked v8
 return v9
}

• Insight: if you can’t solve the problem, change the problem 
(carry through a “bounds-check” operator in the IR to a pseudo-machine-inst)

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1: i32):
 v2 = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! dynamic_mem(mt1, 0, gv2-1, nullable) = dynamic_bound.i64 v3, v2, v4
 v6 = load.i64 checked v5
 return v6
}

• Insight: if you can’t solve the problem, change the problem 
(carry through a “bounds-check” operator in the IR to a pseudo-machine-inst)

Proof-Carrying Code: Dynamic Bounds

block0(v0 ! mem(mt0, 0, 0): i64, v1: i32):
 v2 = uextend.i64 v1
 v3 ! dynamic_mem(mt1, 0, 0) = global_value.i64 gv1
 v4 ! dynamic_range(64, gv2, gv2) = global_value.i64 gv2
 v5 ! dynamic_mem(mt1, 0, gv2-1, nullable) = dynamic_bound.i64 v3, v2, v4
 v6 = load.i64 checked v5
 return v6
}

• Insight: if you can’t solve the problem, change the problem 
(carry through a “bounds-check” operator in the IR to a pseudo-machine-inst)

• Subtle but important impact: separate value identity for property with separate
validation status

Proof-Carrying Code: Dynamic Bounds

v2 = uextend.i64 v1

v3 = global_value.i64 gv1
v4 = global_value.i64 gv2

v5 = dynamic_bound.i64 v3, v2, v4

v6 = load.i64 checked v5
return v6

• Emit dynamic_bound as “pseudoinstruction” (bundled machine instructions)
and check as one unit: can show that combined semantics correspond

mov rax, …

mov rsi, [rdi+…]
mov rcx, [rdi+…]

xor r8, r8
add rsi, rax
cmp rax, rcx
cmovae rsi, r8 ;; zero if out-of-bounds

mov rax, [rsi]

Symbolic Register Allocator Checker

• We’ve verified only up to virtual register code (VCode) — regalloc still in TCB

• Can we do translation validation on regalloc separately?

Symbolic Register Allocator Checker

add v0, v1
mov v3, [v2+v0*8]
mov [v4+v5], v3
ret

Register allocation: provide abstraction  
over real machine instructions with 
virtual registers

Symbolic Register Allocator Checker

add v0, v1
mov v3, [v2+v0*8]
mov [v4+v5], v3
ret

add rax, rcx
mov r8, [r9+rax*8]
mov [r10+r11], r8
ret

Equivalent?

Symbolic Register Allocator Checker

add rax, rcx
mov r8, [r9+rax*8]
mov [r10+r11], r8
ret

Equivalent?

- Scan forward through code

- Track “contents” of each register

- Validate each arg gets expected vreg

add v0, v1
mov v3, [v2+v0*8]
mov [v4+v5], v3
ret

Symbolic Register Allocator Checker

Equivalent?

- Scan forward through code

- Track “contents” of each register

- Validate each arg gets expected vreg

input: rax={v0}, rcx={v1}, r9={v2}, 
 r10={v4}, r11={v5} 
rax = {v0 (update)} 
r8 = {v3}

add rax, rcx
mov r8, [r9+rax*8]
mov [r10+r11], r8
ret

add v0, v1
mov v3, [v2+v0*8]
mov [v4+v5], v3
ret

Symbolic Register Allocator Checker

• Aside: this is a fantastically effective way to write a new register allocator

Symbolic Register Allocator Checker

• Aside: this is a fantastically effective way to write a new register allocator

• Production regalloc often involves a lot of heuristics and edge-cases with
funny constraints

• I could not have found and resolved all edge-cases without it

Symbolic Register Allocator Checker

• Aside: this is a fantastically effective way to write a new register allocator

• Production regalloc often involves a lot of heuristics and edge-cases with
funny constraints

• I could not have found and resolved all edge-cases without it

• So effective that this is the only test method for regalloc2 (no static suite)

• We’ve never found a miscompilation due to RA in production in ~3 years

WebAssembly is Secure!

Sandbox boundary:

WebAssembly is Secure!

Sandbox boundary: 
- Formal verification of instruction sel 
- Translation validation of key parts 
 (regalloc, memory sandboxing?)

WebAssembly is Secure!

Sandbox boundary: 
- Formal verification of instruction sel 
- Translation validation of key parts 
 (regalloc, memory sandboxing?)

✅ Secure

…WebAssembly is Secure?

Sandbox boundary: 
- Formal verification of instruction sel 
- Translation validation of key parts 
 (regalloc, memory sandboxing?)

?? Secure?
Chaos

WebAssembly is Secure?

• What is the threat model?

WebAssembly is Secure?

• What is the threat model?

• Code attempting to exceed permissions on system: OK!

WebAssembly is Secure?

• What is the threat model?

• Code attempting to exceed permissions on system: OK!

• Code attempting to exceed permissions inside guest

WebAssembly is Secure?

• What is the threat model?

• Code attempting to exceed permissions on system: OK!

• Code attempting to exceed permissions inside guest

• Exploit runtime / language implementation bugs to…

• …Observe other requests’ data

WebAssembly is Secure?

• What is the threat model?

• Code attempting to exceed permissions on system: OK!

• Code attempting to exceed permissions inside guest

• Exploit runtime / language implementation bugs to…

• …Observe other requests’ data

• …Subvert authorization logic

• …Inject malicious content

• We still need a correct language implementation for application security

WebAssembly is Secure?

WebAssembly is Secure?

Defense-in-depth: per-request isolation 
-> even a buggy runtime cannot allow cross-user leakage

WebAssembly is Secure?

Defense-in-depth: per-request isolation 
-> even a buggy runtime cannot allow cross-user leakage
AKA: put the Wasm sandbox boundary between requests

Building a Correct(-ish) JavaScript Runtime

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

• Our friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

• Our friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

• Step 2: avoid the JIT compiler of that runtime

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

• Our friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

• Step 2: avoid the JIT compiler of that runtime

• Optimization logic bugs (especially type confusion) account for many CVEs

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

• Our friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

• Step 2: avoid the JIT compiler of that runtime

• Optimization logic bugs (especially type confusion) account for many CVEs

• But don’t you want performance?! (yes… we’ll get there)

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

• Our friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

• Step 2: avoid the JIT compiler of that runtime

• Optimization logic bugs (especially type confusion) account for many CVEs

• But don’t you want performance?! (yes… we’ll get there)

• … and it’s all we can run on Wasm anyway, today

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

• Our friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

• Step 2: avoid the JIT compiler of that runtime

• Optimization logic bugs (especially type confusion) account for many CVEs

• But don’t you want performance?! (yes… we’ll get there)

• … and it’s all we can run on Wasm anyway, today

• Step 3: … fix performance

Building a Correct(-ish) JavaScript Runtime

• Step 1: use someone else’s runtime

• Our friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

• Step 2: avoid the JIT compiler of that runtime

• Optimization logic bugs (especially type confusion) account for many CVEs

• But don’t you want performance?! (yes… we’ll get there)

• … and it’s all we can run on Wasm anyway, today

• Step 3: … fix performance (???)

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

rr

gdb
perf

valgrind
asan

Native x86_64-linux

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

rr

gdb
perf

valgrind
asan

Native x86_64-linux Wasmtime
gdb kind of works

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

rr

gdb
perf

valgrind
asan

Native x86_64-linux Wasmtime
gdb kind of works

but steps through runtime too

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

rr

gdb
perf

valgrind
asan

Native x86_64-linux Wasmtime
gdb kind of works

but steps through runtime too
DWARF transform assertion failures

An Ode to Interpreters

• An interpreter is the easiest — and thus most likely to be correctly written —
implementation of a language

• Typical tiering architectures in JITs mean that interpreters are “simple” —
focus on correctness rather than (too much) performance

• An interpreter is portable — and thus can be developed on native platforms

rr

gdb
perf

valgrind
asan

Native x86_64-linux Wasmtime
gdb kind of works

but steps through runtime too
DWARF transform assertion failures

😱

Single Source of Truth

• Interpreter will exist anyway (JIT tiers, fallback); is easier to get right; works
fine on Wasm (naturally portable); it’s just… slow

• Can we keep the interpreter as the only language implementation, and
somehow derive a compiler from it?

Compiler Backend?

switch(*pc++) {
 case ADD:
 auto a = pop();
 auto b = pop();
 push(a + b);
 break;
 case RET:
 return pop();
}

ADD 
RET

func:

Compiler Backend?

switch(*pc++) {
 case ADD:
 auto a = pop();
 auto b = pop();
 push(a + b);
 break;
 case RET:
 return pop();
}

ADD 
RET

func:

func() {
 auto a = pop();
 auto b = pop();
 push(a + b);
 return pop();
}

Compiler Backend?

switch(*pc++) {
 case ADD:
 auto a = pop();
 auto b = pop();
 push(a + b);
 break;
 case RET:
 return pop();
}

ADD 
RET

func:

func() {
 auto a = pop();
 auto b = pop();
 push(a + b);
 return pop();
}

Key insight: Wasm is a small, introspectable, well-behaved IR; 
partial evaluation should be tractable (moreso than on native code)

weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

• Very very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original

weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

• Very very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original

• Gives us a compiler “for free” once we have an interpreter

Specialization Intrinsics
void interp(bytecode* pc) {

 while (true) {
 switch (*pc++) {
 case OP1:
 …

 break;
 case OP2:
 …

 break;
 }
 }
}

Specialization Intrinsics
void interp(bytecode* pc) {

 while (true) {
 switch (*pc++) {
 case OP1:
 …

 break;
 case OP2:
 …

 break;
 }
 }
}

void interp(bytecode* pc) {
 weval::push_context(pc);
 while (true) {
 switch (*pc++) {
 case OP1:
 …
 weval::update_context(pc);
 break;
 case OP2:
 …
 weval::update_context(pc);
 break;
 }
 }
}

Specialization Intrinsics

1. “No magic”: only expand code
where interpreter specifies via
context mechanism

2. Partially evaluate iterations of the
interpreter loop in a context-
sensitive way, where the context
is the bytecode PC

3. … and that’s it.

void interp(bytecode* pc) {
 weval::push_context(pc);
 while (true) {
 switch (*pc++) {
 case OP1:
 …
 weval::update_context(pc);
 break;
 case OP2:
 …
 weval::update_context(pc);
 break;
 }
 }
}

Discussion: Compilers from Interpreters

• This works; shipping in StarlingMonkey runtime; ~2-3x speedups

Discussion: Compilers from Interpreters

• This works; shipping in StarlingMonkey runtime; ~2-3x speedups

• We are deriving a JIT from first principles from an interpreter

Discussion: Compilers from Interpreters

• This works; shipping in StarlingMonkey runtime; ~2-3x speedups

• We are deriving a JIT from first principles from an interpreter

• We are avoiding doing anything special or language/JIT-engine-specific

Discussion: Compilers from Interpreters

• This works; shipping in StarlingMonkey runtime; ~2-3x speedups

• We are deriving a JIT from first principles from an interpreter

• We are avoiding doing anything special or language/JIT-engine-specific

• We think we can get more optimizations by writing semantics-preserving rules

• E.g., profile-guided speculative inlining + box-unbox elision to get type-
specialized unboxing in JS

Discussion: Correctness-Focused Runtimes

• Correct software is a never-fully-attained goal (realistically)

• But we can carefully delineate abstraction boundaries and validate them
separately

Discussion: Correctness-Focused Runtimes

• Observation: limited formal methods can be practical in practice

• SMT-based checking of compiler lowering rules

• Symbolic checker of register allocator

• Maybe? proof-carrying code for sandboxing logic

Discussion: Correctness-Focused Runtimes

• Observation: limited formal methods can be practical in practice

• SMT-based checking of compiler lowering rules

• Symbolic checker of register allocator

• Maybe? proof-carrying code for sandboxing logic

• Observation: meta-compilers (deriving compilers from simpler
representations) can be practical in practice

• weval is much smaller than the full compiler-to-Wasm would have been

Discussion: Correctness-Focused Runtimes

• Observation: limited formal methods can be practical in practice

• SMT-based checking of compiler lowering rules

• Symbolic checker of register allocator

• Maybe? proof-carrying code for sandboxing logic

• Observation: meta-compilers (deriving compilers from simpler
representations) can be practical in practice

• weval is much smaller than the full compiler-to-Wasm would have been

• Wasm has set an excellent precedent for explicit semantics, static typing, and
focus on small clean abstractions

Thanks! Questions?

